КАТАЛОГ ПРОДУКЦИИ
ОБОРУДОВАНИЕ • ТЕРМОМАТЕРИАЛЫ • УСЛУГИ
Уважаемые друзья!

Компания ООО «НПО «Нефтегазкомплекс-ЭХЗ» уже на протяжении 20 лет работает в сфере электрохимической защиты трубопроводов от почвенной коррозии, и в настоящее время является одним из ведущих предприятий в этой отрасли.

В деятельности компании можно выделить три основных направления:
- Разработка и производство оборудования для защиты от коррозии подземных стальных сооружений, в том числе: станций катодной защиты, подсистем дистанционного коррозионного мониторинга, подсистем дистанционного контроля и управления средствами ЭХЗ и др.
- Производство термоматериалов и оборудования для сварки (пайки) выводов ЭХЗ к телу трубопровода
- Проведение электрометрических работ по комплексному и детальнокомплексному обследованию магистральных трубопроводов и других подземных стальных сооружений.

Также наша компания оказывает услуги по пуско-наладочным работам, шеф-монтажу и сервисному (гарантийному и постгарантийному) обслуживанию выпускаемого оборудова-ния.

Продукция, выпускаемая нашей компанией, имеет сертификаты соответствия, декларации соответствия таможенного союза, включена в реестр оборудования электрохимической защиты, разрешенного к применению в ПАО «Газпром» и в реестр основных видов продукции ПАО «Транснефть».

Оборудование, выпускаемое ООО «НПО «Нефтегазкомплекс-ЭХЗ» эксплуатируется на предприятиях ПАО «Газпром» и в нефтяных компаниях уже более 10 лет. За это время оно зарекомендовало себя как надежное и удобное в эксплуатации, что подтверждается многочисленными отзывами. Многие, реализованные нами, технические решения запатентованы и не имеют аналогов в отрасли.

Содержание

Станция катодной защиты НГК-ИПКЗ-Еврο .. 4
Станция катодной защиты НГК-ИПКЗ-Еврο(ПТ) 8
Станция катодной защиты многоканальная НГК-ИПКЗ-Еврο(6Н) 10
Станция катодной защиты многоканальная НГК-ИПКЗ-Еврο(12Н) 12
Комплекс модульного оборудования ЭХЗ НГК-ИПКЗ-Еврο 14
Комплекс модульного оборудования ЭХЗ многоканальный НГК-ИПКЗ-Еврο 18
Подсистема дистанционного коррозионного мониторинга НГК-СКМ 20
Подсистема дистанционного коррозионного мониторинга НГК-СКМ(У) 22
Устройство коррозионного мониторинга НГК-КИП 25
Подсистема дистанционного контроля и управления средствами ЭХЗ НГК-ПДКУ ЭХЗ 26
Станция катодной защиты НГК-ИПКЗ(М) .. 28
Станция дренажной защиты НГК-СДЗ .. 30
Станция катодной защиты СКЗ НГК-ИПКЗ-Еврο(МР) 32
Блок совместной защиты БСЗ .. 34
Термитная приварка выводов ЭХЗ ... 36
Приварочный комплекс КСУ-1-НГК-ЭХЗ .. 40
Термитная смесь медная и термитный карандаш 42
Установка конденсаторной приварки НГК-УКПВ ЭХЗ 44
Устройство термитной приварки с дистанционным управлением УТП-ДУ-НГК 45
Отраслевая спецификация ... 46
Послепродажное обслуживание ... 48
Коррозионные электрометрические обследования 50
Виды и цели выполняемых электрометрических обследований 51
Станция катодной защиты НГК-ИПКЗ-Евро

Станция катодной защиты НГК-ИПКЗ-Евро предназначена для электрохимической защиты наружных поверхностей подземных стальных сооружений от почвенной коррозии, сбора и обработки информации о коррозионных процессах и противокоррозионной защите и передачи этой информации по цифровому интерфейсу (RS-485/Fiber optic (ВОЛС)/GSM) в системы телемеханики. Станция поддерживает режимы телеметрии (ТИ), телесигнализации (ТС), телеуправления (ТУ) и телерегулирования (ТР). СКЗ НГК-ИПКЗ-Евро соответствует требованиям ГОСТ Р 51164-98, ВТТ к модульным станциям катодной защиты и СТО Газпром 9.4–023–2013.

СКЗ НГК-ИПКЗ-Евро позволяет производить мониторинг коррозионных процессов в одной точке - точке дренажа. Для увеличения количества точек коррозионного мониторинга (до 64) необходимо использовать подсистему НГК-СКМ.

ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ

Электрохимическая защита наружных поверхностей стальных сооружений от коррозии с возможностью:
- автоматической стабилизации тока катодной защиты
- автоматической стабилизации потенциала с омической составляющей защищаемого подземного стального сооружения
- автоматической стабилизации поляризационного потенциала защищаемого подземного стального сооружения
- автоматического перехода в режим стабилизации тока катодной защиты из режима стабилизации потенциала при обрыве в цепи электрода сравнения
- автоматической стабилизации выходного напряжения (при проведении интенсивных измерений)
- защиты от импульсных перенапряжений по всем цепям внешней коммутации
- автоматического переключения на резервную линию питания
- сбора и обработки информации о коррозионных процессах и противокоррозионной защите, отображения на дисплее модуля управления и передачи этой информации по цифровому интерфейсу RS-485/ВОЛС/GSM в системы телемеханики
- дистанционного контроля несанкционированного доступа в шкаф СКЗ
- поддержки работы с индикаторами коррозионных процессов ИКП
- интеграции в подсистему контроля и управления средствами защиты от коррозии

Модули преобразователя выполнены в соответствии с ГОСТ 28601.3-90
СОСТАВ

В комплект поставки СКЗ НГК-ИПКЗ-Евро входит следующее оборудование и модули:

<table>
<thead>
<tr>
<th>Описание</th>
<th>Количество</th>
</tr>
</thead>
<tbody>
<tr>
<td>Шкаф 19* монтажный по ГОСТ 26601.2-90</td>
<td>1 шт.</td>
</tr>
<tr>
<td>Преобразователь катодной защиты НГК-ИПКЗ-Евро</td>
<td>1 шт.</td>
</tr>
<tr>
<td>Комплект устройств защиты от импульсных перенапряжений (УЗИП)</td>
<td>1 комплект</td>
</tr>
<tr>
<td>Счетчик активной электрозэнергии основной линии ~230 B</td>
<td>1 шт.</td>
</tr>
<tr>
<td>Система автоматического переключения на резервную линию ~230 B*</td>
<td>1 шт.</td>
</tr>
<tr>
<td>Счётчик активной электрозэнергии резервной линии ~230 B*</td>
<td>1 шт.</td>
</tr>
<tr>
<td>Модуль аккумуляторных батарей АКБ*</td>
<td>1 шт.</td>
</tr>
<tr>
<td>Система принудительной вентиляции шкафа*</td>
<td>1 шт.</td>
</tr>
<tr>
<td>Подставка для шкафа*</td>
<td>1 шт.</td>
</tr>
<tr>
<td>НГК-КИП-А*</td>
<td>по карте заказа СКЗ НГК-ИПКЗ-Евро</td>
</tr>
<tr>
<td>НГК-КИП-С(ИКП)*</td>
<td>по карте заказа СКЗ НГК-ИПКЗ-Евро</td>
</tr>
<tr>
<td>Подсистема дистанционного коррозионного мониторинга НГК-СКМ*</td>
<td>1 шт.</td>
</tr>
<tr>
<td>НГК-КИП-СМ(ИКП)*</td>
<td>по карте заказа СКЗ НГК-ИПКЗ-Евро</td>
</tr>
</tbody>
</table>

*оборудование поставляется дополнительно согласно карте заказа

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Напряжение питающей сети переменного тока частотой 50 Гц (± 5 Гц), при котором обеспечивается безаварийное функционирование НГК-ИПКЗ-Евро, В

| 150 – 264 |

КПД при номинальной выходной мощности, %, не менее

| 90 |

Пределы задания выходного тона, %

| 0 – 100 |

Пределы регулирования потенциала защищаемого сооружения (с омической составляющей), В

| от -0,5 до -4,0 |

Пределы регулирования поляризационного потенциала защищаемого подземного стального сооружения, В

| от -0,5 до -2,5 |

Варианты климатического исполнения и категории размещения У1 (шкаф по ГОСТ 14254-2015 со степенью защиты, обеспечиваемую оболочкой не менее IP34) и У2 (шкаф по ГОСТ 14254-2015 со степенью защиты, обеспечиваемую оболочкой не менее IP20) по ГОСТ 15150-69.*

*По согласованию с заказчиком возможно изготовление НГК-ИПКЗ-Евро климатического исполнения и категории размещения УХЛ1.
<table>
<thead>
<tr>
<th>СКЗ</th>
<th>Номинальное выходное напряжение, В</th>
<th>Номинальная выходная мощность, кВт</th>
<th>Номинальный суммарный выходной ток при номинальном выходном напряжении, А</th>
<th>Полная потребляемая мощность, кВА, не более</th>
<th>Габаритные размеры (В х Ш х Г), мм, не более</th>
<th>Масса, кг, не более</th>
</tr>
</thead>
<tbody>
<tr>
<td>НГК-ИПКЗ(П)-Евро-1,0(48)</td>
<td>48</td>
<td>1,0</td>
<td>21,0</td>
<td>1,13</td>
<td>320x360x425</td>
<td>15</td>
</tr>
<tr>
<td>НГК-ИПКЗ(П)-Евро-2,0(48)</td>
<td>48</td>
<td>2,0</td>
<td>42,0</td>
<td>2,24</td>
<td>320x360x425</td>
<td>20</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-0,2(24)</td>
<td>24</td>
<td>0,2</td>
<td>8,0</td>
<td>0,25</td>
<td>1136x600x450</td>
<td>46(71)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-0,4(24)</td>
<td>24</td>
<td>0,4</td>
<td>16,0</td>
<td>0,47</td>
<td>1136x600x450</td>
<td>48(73)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-0,6(24)</td>
<td>24</td>
<td>0,6</td>
<td>24,0</td>
<td>0,70</td>
<td>1136x600x450</td>
<td>50(75)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-0,8(24)</td>
<td>24</td>
<td>0,8</td>
<td>32,0</td>
<td>0,93</td>
<td>1136x600x450</td>
<td>52(77)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-0,2(48)</td>
<td>48</td>
<td>0,2</td>
<td>4,0</td>
<td>0,25</td>
<td>1136x600x450</td>
<td>46(71)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-0,4(48)</td>
<td>48</td>
<td>0,4</td>
<td>8,0</td>
<td>0,47</td>
<td>1136x600x450</td>
<td>48(73)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-0,6(48)</td>
<td>48</td>
<td>0,6</td>
<td>12,0</td>
<td>0,70</td>
<td>1136x600x450</td>
<td>50(75)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-0,8(48)</td>
<td>48</td>
<td>0,8</td>
<td>16,0</td>
<td>0,93</td>
<td>1136x600x450</td>
<td>52(77)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-1,0(48)</td>
<td>48</td>
<td>1,0</td>
<td>21,0</td>
<td>1,13</td>
<td>1136x600x450</td>
<td>55(80)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-2,0(48)</td>
<td>48</td>
<td>2,0</td>
<td>42,0</td>
<td>2,24</td>
<td>1136x600x450</td>
<td>60(85)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-3,0(48)</td>
<td>48</td>
<td>3,0</td>
<td>63,0</td>
<td>3,35</td>
<td>1136x600x450</td>
<td>65(90)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-4,0(48)</td>
<td>48</td>
<td>4,0</td>
<td>84,0</td>
<td>4,46</td>
<td>1265x600x450</td>
<td>80(105)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-5,0(48)</td>
<td>48</td>
<td>5,0</td>
<td>104,0</td>
<td>5,57</td>
<td>1265x600x450</td>
<td>85(110)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-1,0(96)</td>
<td>96</td>
<td>1,0</td>
<td>10,5</td>
<td>1,13</td>
<td>1136x600x450</td>
<td>55(80)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-2,0(96)</td>
<td>96</td>
<td>2,0</td>
<td>21,0</td>
<td>2,24</td>
<td>1136x600x450</td>
<td>60(85)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-3,0(96)</td>
<td>96</td>
<td>3,0</td>
<td>31,5</td>
<td>3,35</td>
<td>1136x600x450</td>
<td>65(90)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-4,0(96)</td>
<td>96</td>
<td>4,0</td>
<td>42,0</td>
<td>4,46</td>
<td>1265x600x450</td>
<td>80(105)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-5,0(96)</td>
<td>96</td>
<td>5,0</td>
<td>52,0</td>
<td>5,57</td>
<td>1265x600x450</td>
<td>85(110)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-1,25(48)</td>
<td>48</td>
<td>1,25</td>
<td>26,1</td>
<td>1,38</td>
<td>1136x600x450</td>
<td>55(80)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-2,5(48)</td>
<td>48</td>
<td>2,5</td>
<td>52,2</td>
<td>2,74</td>
<td>1136x600x450</td>
<td>60(85)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-3,75(48)</td>
<td>48</td>
<td>3,75</td>
<td>78,3</td>
<td>4,10</td>
<td>1265x600x450</td>
<td>80(105)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-5,0(48)</td>
<td>48</td>
<td>5,0</td>
<td>104,0</td>
<td>5,57</td>
<td>1265x600x450</td>
<td>85(110)</td>
</tr>
</tbody>
</table>

Масса в скобках: полная комплектация с подсистемой НГК-СКМ и модулем АКБ БУ и СКМ.
1 СКЗ построена на базе модулей силовых НГК-БП-Евро-0,2(24) выходной мощностью 0,2 кВт.
2 СКЗ построена на базе модулей силовых НГК-БП-Евро-0,2(48) выходной мощностью 0,2 кВт.
3 СКЗ построена на базе модулей силовых НГК-БП-Евро-1,0(48) выходной мощностью 1,0 кВт.
4 СКЗ построена на базе модулей силовых НГК-БП-Евро-1,0(96) выходной мощностью 1,0 кВт.
5 СКЗ построена на базе модулей силовых НГК-БП-Евро-1,25(48) выходной мощностью 1,25 кВт.

УСЛОВИЯ ЭКСПЛУАТАЦИИ

Температура окружающего воздуха, °C
от -45 до +45

Относительная влажность воздуха при t = +25 °C, %, не более
98

Атмосферное давление, кПа (мм рт. ст.)
84,0 – 106,7 (630 – 800)
УСЛОВНОЕ ОБОЗНАЧЕНИЕ

При оформлении заказа на СКЗ НГК-ИПКЗ-Евро используется условное обозначение:

СКЗ НГК-ИПКЗ(П)-Евро(ПТ)(XН)-5,0(48)-У2-М64(10), где:

<table>
<thead>
<tr>
<th>СКЗ</th>
<th>Станция катодной защиты;</th>
</tr>
</thead>
<tbody>
<tr>
<td>НГК</td>
<td>Аббревиатура предприятия-изготовителя;</td>
</tr>
<tr>
<td>ИПКЗ</td>
<td>Импульсный преобразователь катодной защиты;</td>
</tr>
<tr>
<td>(П)</td>
<td>Включается в обозначение только при переносном конструктивном исполнении;</td>
</tr>
<tr>
<td>Евро</td>
<td>Конструктивное исполнение шкафа по ГОСТ 28601.2-90 и модулей по ГОСТ 28601.3-90;</td>
</tr>
<tr>
<td>(ПТ)</td>
<td>Включается в обозначение только для напряжения питания постоянного тока.</td>
</tr>
<tr>
<td>(XН)</td>
<td>Включается в обозначение только при исполнении «многоканальная». X - количество независимых каналов, работающих каждый на свою нагрузку: от 2-х до 24-х</td>
</tr>
<tr>
<td>5,0</td>
<td>Номинальная выходная мощность в киловаттах (0,2; 0,4; 0,6; 0,8; 1,0; 1,25; 2,0; 2,5; 3,0; 3,75; 4,0; 5,0 кВт);</td>
</tr>
<tr>
<td>(48)</td>
<td>Номинальное выходное напряжение в вольтах (24; 48; 96 В);</td>
</tr>
<tr>
<td>У2</td>
<td>Климатическое исполнение и категория размещения по ГОСТ 15150-69 (У1; У2);</td>
</tr>
<tr>
<td>M</td>
<td>(и все следующие параметры) включаются в обозначение только при комплектовании подсистемой дистанционного коррозионного мониторинга НГК-СКМ;</td>
</tr>
<tr>
<td>64</td>
<td>Количество устройств коррозионного мониторинга в НГК-СКМ (НГК-КИП-СМ(ИКП)) от 1 до 64 шт.;</td>
</tr>
<tr>
<td>(10)</td>
<td>Количество линий подключения к НГК-КИП (лучей) в НГК-СКМ от 1 до 10.</td>
</tr>
</tbody>
</table>
Станция катодной защиты НГК–ИПКЗ–Евро(ПТ)

Станция катодной защиты НГК–ИПКЗ–Евро(ПТ) предназначена для электрохимической защиты наружных поверхностей подземных стальных сооружений от почвенной коррозии, сбора и обработки информации о коррозионных процессах и противокоррозионной защите и передачи этой информации по цифровому интерфейсу (RS–485/Fiber optic(ВОЛС)/GSM) в системы телемеханики. Напряжение питающей сети постоянного тока, при котором обеспечивается безаварийное функционирование 18–60 В.

СКЗ выпускается в двух исполнениях для размещения в подземных аккумуляторных отсеках ветрогенераторных установок и обычном наземном исполнении. Первое исполнение отличается минимальными габаритными размерами и отсутствием органов управления (все управление осуществляется только посредством систем телемеханики).

В наземном исполнении станция катодной защиты имеет привычные органы управления и индикаторы.

УНИВЕРСАЛЬНОЕ РЕШЕНИЕ ДЛЯ СКЗ

Основными элементами станции катодной защиты НГК–ИПКЗ–Евро(ПТ) являются модули силовые и модули управления. Модульная конструкция СКЗ позволяет создавать различные модификации оборудования на базе одних и тех же модулей. Как в подземном, так и в обычном исполнении, СКЗ может быть:

- без резервирования — один модуль управления НГК–БУ–Евро и один комплект модулей силовых НГК–БП–Евро;
- со 100 % резервированием (КМО) — два НГК–БУ–Евро и два комплекта НГК–БП–Евро;

В вариантах с резервированием, переключение на резерв осуществляется с помощью модуля автоматического включения резерва БАВР.

Представленные на рисунках станции катодной защиты построены на модулях силовых мощностью 200 Вт. Суммарная мощность СКЗ определяется количеством установленных модулей силовых.

КПД станции катодной защиты НГК–ИПКЗ–Евро(ПТ) составляет 90 % и ее применение позволяет снизить общие потери электроэнергии в 4 раза.

Основные параметры НПК-ИПКЗ-Евро(ПТ) для размещения в подземных отсеках

<table>
<thead>
<tr>
<th>СКЗ</th>
<th>Номинальное выходное напряжение, В</th>
<th>Номинальная выходная мощность, кВт</th>
<th>Номинальный суммарный выходной ток, А</th>
<th>Потребляемая мощность, Вт</th>
</tr>
</thead>
<tbody>
<tr>
<td>НПК-ИПКЗ-Евро(ПТ)-0,2(24)</td>
<td>0,2</td>
<td>24</td>
<td>8</td>
<td>226</td>
</tr>
<tr>
<td>НПК-ИПКЗ-Евро(ПТ)-0,4(24)</td>
<td>0,4</td>
<td>4</td>
<td>16</td>
<td>448,5</td>
</tr>
<tr>
<td>НПК-ИПКЗ-Евро(ПТ)-0,6(24)</td>
<td>0,6</td>
<td>6</td>
<td>24</td>
<td>671</td>
</tr>
<tr>
<td>НПК-ИПКЗ-Евро(ПТ)-0,8(24)</td>
<td>0,8</td>
<td>8</td>
<td>32</td>
<td>893,5</td>
</tr>
<tr>
<td>НПК-ИПКЗ-Евро(ПТ)-0,2(48)</td>
<td>0,2</td>
<td>48</td>
<td>4</td>
<td>226</td>
</tr>
<tr>
<td>НПК-ИПКЗ-Евро(ПТ)-0,4(48)</td>
<td>0,4</td>
<td>48</td>
<td>8</td>
<td>448,5</td>
</tr>
<tr>
<td>НПК-ИПКЗ-Евро(ПТ)-0,6(48)</td>
<td>0,6</td>
<td>48</td>
<td>12</td>
<td>671</td>
</tr>
<tr>
<td>НПК-ИПКЗ-Евро(ПТ)-0,8(48)</td>
<td>0,8</td>
<td>48</td>
<td>16</td>
<td>893,5</td>
</tr>
</tbody>
</table>

ОСОБЕННЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Напряжение питающей сети постоянного тока, при котором обеспечивается беззаварийное функционирование, В 18 – 60

Пределы задания выходного тока, % 0 – 100

Пределы регулирования потенциала защищаемого сооружения (с симметричной составляющей), В от -0,5 до -4,0

Пределы регулирования поляризационного потенциала защищаемого подземного стального сооружения, В от -0,5 до -2,5

1 Возможно изготовление для питающей сети постоянного тока напряжением 12 В

Варианты климатического исполнения и категории размещения У1 (шкаф по ГОСТ 14254-2015 со степенью защиты, обеспечиваемой оболочкой не менее IP34) и У2 (шкаф по ГОСТ 14254-2015 со степенью защиты, обеспечиваемую оболочкой не менее IP20) по ГОСТ 15150-69.

Основные параметры НГК-ИПКЗ-Евро(ПТ) для наземного размещения

<table>
<thead>
<tr>
<th>СКЗ</th>
<th>Номинальное выходное напряжение, В</th>
<th>Номинальная выходная мощность, кВт</th>
<th>Номинальный суммарный выходной ток при номинальном напряжении, А</th>
<th>Потребляемая мощность, кВт, не более</th>
<th>Габаритные размеры (В x Ш x Г), мм, не более</th>
<th>Масса, кг, не более</th>
</tr>
</thead>
<tbody>
<tr>
<td>НГК-ИПКЗ-Евро(ПТ)-0,2(24)</td>
<td>24</td>
<td>0,2</td>
<td>8</td>
<td>0,24</td>
<td>1000x600x450</td>
<td>35(36)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро(ПТ)-0,4(24)</td>
<td>24</td>
<td>0,4</td>
<td>16</td>
<td>0,48</td>
<td>1000x600x450</td>
<td>36(37)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро(ПТ)-0,6(24)</td>
<td>24</td>
<td>0,6</td>
<td>24</td>
<td>0,71</td>
<td>1000x600x450</td>
<td>37(38)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро(ПТ)-0,8(24)</td>
<td>24</td>
<td>0,8</td>
<td>32</td>
<td>0,95</td>
<td>1000x600x450</td>
<td>38(39)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро(ПТ)-0,2(48)</td>
<td>48</td>
<td>0,2</td>
<td>4</td>
<td>0,24</td>
<td>1000x600x450</td>
<td>35(36)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро(ПТ)-0,4(48)</td>
<td>48</td>
<td>0,4</td>
<td>8</td>
<td>0,48</td>
<td>1000x600x450</td>
<td>36(37)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро(ПТ)-0,6(48)</td>
<td>48</td>
<td>0,6</td>
<td>12</td>
<td>0,71</td>
<td>1000x600x450</td>
<td>37(38)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро(ПТ)-0,8(48)</td>
<td>48</td>
<td>0,8</td>
<td>16</td>
<td>0,95</td>
<td>1000x600x450</td>
<td>38(39)</td>
</tr>
</tbody>
</table>

Масса в скобках: полная комплектация с подсистемой НГК-СКМ.

1 Станция построена на базе модулей силовых НГК-БП-Евро(ПТ)-0,2(24) выходной мощностью 0,2 кВт

2 Станция построена на базе модулей силовых НГК-БП-Евро(ПТ)-0,2(48) выходной мощностью 0,2 кВт

УСЛОВИЯ ЭКСПЛУАТАЦИИ

Температура окружающего воздуха, ºC от -45 до +45

Относительная влажность воздуха при t = +25 ºC, %, не более 98

Атмосферное давление, кПа (мм рт. ст.) 84,0 – 106,7 (630 – 800)
Станция катодной защиты многоканальная НГК-ИПКЗ-Евро(6Н)

Многоканальная станция катодной защиты НГК-ИПКЗ-Евро построена на базе нескольких независимых импульсных преобразователей, работающих на раздельные нагрузки, и предназначена для электрохимической защиты наружных поверхностей подземных стальных сооружений от почвенной коррозии, сбора и обработки информации о коррозионных процессах и противокоррозионной защите и передачи этой информации по цифровому интерфейсу RS-485/Fiber optic (ВОЛС)/GSM в системы телемеханики. Многоканальная станция катодной защиты поддерживает режимы телезмерения (ТИ), телесигнализации (ТС), телеуправления (ТУ) и телерегулирования (ТР). Станция соответствует требованиям ГОСТ Р 51164-98, ВТТ к модульным станциям катодной защиты и СТО Газпром 9.4-023-2013.

Многоканальная станция катодной защиты позволяет производить мониторинг коррозионных процессов в точке дренажа (для каждого канала). Для увеличения количества точек коррозионного мониторинга (до 32) необходимо использовать подсистему НГК-СКМ. Возможно увеличение количества точек мониторинга более 32-х путем установки дополнительных модулей НГК-КССМ.

ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ

Электрохимическая защита наружных поверхностей подземных стальных сооружений от коррозии, с возможностью:
- работы на несколько независимых нагрузок (каналов)
- автоматической стабилизации тока катодной защиты для каждого канала
- автоматической стабилизации потенциала с опцией составляющей защищаемого подземного стального сооружения для каждого канала
- автоматической стабилизации поляризационного потенциала защищаемого подземного стального сооружения для каждого канала
- автоматического перехода в режим стабилизации тока катодной защиты из режима стабилизации потенциала при превышении в цепи электрода значения для каждого канала
- автоматической стабилизации выходного напряжения (при проведении интегрального измерения) для каждого канала
- защиты от импульсных перенапряжений по всем цепям внешней коммутации
- автоматического переключения на резервную линию питания
- сбора и обработки информации о коррозионных процессах и противокоррозионной защите, отображения на дисплее модуля управления и передачи этой информации по цифровому интерфейсу RS-485/ВОЛС/GSM в системы телемеханики
- дистанционного контроля несанкционированного доступа в шкаф
- поддержки работы с индикаторами коррозионных процессов с помощью УСИКП СТ
- интеграции в подсистему контроля и управления средствами защиты от коррозии

Модули преобразователя выполнены в соответствии с ГОСТ 28601.3-90.
ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

<table>
<thead>
<tr>
<th>СКЗ</th>
<th>Номинальное выходное напряжение, В</th>
<th>Номинальная выходная мощность каждого канала, кВт</th>
<th>Номинальный суммарный выходной ток каждого канала, А</th>
<th>Полная потребляемая мощность, кВт-А, не более</th>
<th>Габаритные размеры (В х Ш х Г), мм, не более</th>
<th>Масса, кг, не более</th>
</tr>
</thead>
<tbody>
<tr>
<td>НГК-ИПКЗ-ЕвроЗ-1,0(48)</td>
<td>48</td>
<td>1,0</td>
<td>21,0</td>
<td>2,26</td>
<td>1405х800х450</td>
<td>115</td>
</tr>
<tr>
<td>НГК-ИПКЗ-ЕвроЗ-2,0(48)</td>
<td>48</td>
<td>1,0</td>
<td>21,0</td>
<td>3,40</td>
<td>1675х800х450</td>
<td>130</td>
</tr>
<tr>
<td>НГК-ИПКЗ-ЕвроЗ-3,0(48)</td>
<td>48</td>
<td>1,0</td>
<td>21,0</td>
<td>4,53</td>
<td>1675х600х450</td>
<td>140</td>
</tr>
<tr>
<td>НГК-ИПКЗ-ЕвроЗ-4,0(48)</td>
<td>48</td>
<td>1,0</td>
<td>21,0</td>
<td>5,66</td>
<td>1675х600х450</td>
<td>150</td>
</tr>
<tr>
<td>НГК-ИПКЗ-ЕвроЗ-5,0(48)</td>
<td>48</td>
<td>1,0</td>
<td>21,0</td>
<td>6,79</td>
<td>1675х600х450</td>
<td>160</td>
</tr>
<tr>
<td>НГК-ИПКЗ-ЕвроЗ-6,0(48)</td>
<td>48</td>
<td>1,0</td>
<td>10,5</td>
<td>2,26</td>
<td>1405х800х450</td>
<td>115</td>
</tr>
<tr>
<td>НГК-ИПКЗ-ЕвроЗ-7,0(48)</td>
<td>48</td>
<td>1,0</td>
<td>10,5</td>
<td>3,40</td>
<td>1675х600х450</td>
<td>130</td>
</tr>
<tr>
<td>НГК-ИПКЗ-ЕвроЗ-8,0(48)</td>
<td>48</td>
<td>1,0</td>
<td>10,5</td>
<td>4,53</td>
<td>1675х800х450</td>
<td>140</td>
</tr>
<tr>
<td>НГК-ИПКЗ-ЕвроЗ-9,0(48)</td>
<td>48</td>
<td>1,0</td>
<td>10,5</td>
<td>5,66</td>
<td>1675х800х450</td>
<td>150</td>
</tr>
<tr>
<td>НГК-ИПКЗ-ЕвроЗ-10,0(48)</td>
<td>48</td>
<td>1,0</td>
<td>10,5</td>
<td>6,79</td>
<td>1675х800х450</td>
<td>160</td>
</tr>
<tr>
<td>НГК-ИПКЗ-ЕвроЗ-11,0(48)</td>
<td>48</td>
<td>1,0</td>
<td>26,1</td>
<td>2,76</td>
<td>1405х600х450</td>
<td>130</td>
</tr>
<tr>
<td>НГК-ИПКЗ-ЕвроЗ-12,0(48)</td>
<td>48</td>
<td>1,0</td>
<td>26,1</td>
<td>4,15</td>
<td>1675х800х450</td>
<td>140</td>
</tr>
<tr>
<td>НГК-ИПКЗ-ЕвроЗ-13,0(48)</td>
<td>48</td>
<td>1,0</td>
<td>26,1</td>
<td>5,53</td>
<td>1675х800х450</td>
<td>150</td>
</tr>
<tr>
<td>НГК-ИПКЗ-ЕвроЗ-14,0(48)</td>
<td>48</td>
<td>1,0</td>
<td>26,1</td>
<td>6,91</td>
<td>1675х800х450</td>
<td>165</td>
</tr>
<tr>
<td>НГК-ИПКЗ-ЕвроЗ-15,0(48)</td>
<td>48</td>
<td>1,0</td>
<td>26,1</td>
<td>8,29</td>
<td>1675х800х450</td>
<td>175</td>
</tr>
</tbody>
</table>

1 СКЗ построена на базе модулей силовых НГК-БП-ЕвроЗ-1,0(48) выходной мощностью 1,0 кВт
2 СКЗ построена на базе модулей силовых НГК-БП-ЕвроЗ-1,0(96) выходной мощностью 1,0 кВт
3 СКЗ построена на базе модулей силовых НГК-БП-ЕвроЗ-1,25(48) выходной мощностью 1,25 кВт

УСЛОВИЯ ЭКСПЛУАТАЦИИ

<table>
<thead>
<tr>
<th>Таблица 3</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Температура окружающего воздуха, °C</td>
<td>от -45 до +45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Относительная влажность воздуха при t = -25 °C, %, не более</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Атмосферное давление, кПа (мм рт. ст.)</td>
<td>84,0 – 106,7 (630 – 800)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Станция катодной защиты многоканальная НГК-ИПКЗ-ЕвроЗ (12Н)

Многоканальная станция катодной защиты НГК-ИПКЗ-ЕвроЗ построена на базе нескольких независимых импульсных преобразователей, работающих на раздельные нагрузки, и предназначена для электрохимической защиты наружных поверхностей подземных стальных сооружений от почвенной коррозии, сбора и обработки информации о коррозионных процессах и противокоррозионной защите и передачи этой информации по цифровому интерфейсу (в системы телемеханики).

Многоканальная станция катодной защиты поддерживает режимы телезмерения (ТИ), телесигнализации (ТС), телеуправления (ТУ) и телерегулирования (ТР). Станция соответствует требованиям ГОСТ Р 51164-98, ВТТ к модульным станциям катодной защиты и СТО Газпром 9.4-023-2013.

ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ

Электрохимическая защита наружных поверхностей подземных стальных сооружений от коррозии, с возможностью:

- работы на несколько независимых нагрузках (каналов)
- обеспечения 100 % резервирования силовой части каждого канала
- автоматической стабилизации тока катодной защиты для каждого канала
- автоматической стабилизации потенциала с омической составляющей защищаемого подземного стального сооружения для каждого канала
- автоматической стабилизации поляризационного потенциала защищаемого подземного стального сооружения для каждого канала
- автоматического перехода в режим стабилизации тока катодной защиты из режима стабилизации потенциала при обрыве в цепи электрода сравнения для каждого канала
- автоматической стабилизации выходного напряжения (при проведении интенсивных измерений) для каждого канала
- защиты от импульсных перенапряжений по всем цепям внешней коммутации
- автоматического переключения на резервную линию питания
- сбора и обработки информации о коррозионных процессах и противокоррозионной защите, отображения на дисплее модуля управления и передачи этой информации по цифровому интерфейсу RS-485/ВОСЛ/ГСМ в системы телемеханики
- дистанционного контроля несанкционированного доступа в шкаф
- поддержки работы с индикаторами коррозионных процессов с помощью УС ИКП СТ
- интеграции в подсистему контроля и управления средствами защиты от коррозии

Модули преобразователя выполнены в соответствии с ГОСТ 28601.3-90.
ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Количество независимых нагрузок (каналов): 2 – 12
- Номинальная выходная мощность канала, Вт: 200
- Номинальный выходной ток канала, А: 8(4)
- Номинальное выходное напряжение канала, В: 24(48)
- Напряжение питающей сети переменного тока частотой 50 Гц (± 5Гц), при котором обеспечивается безаварийное функционирование, В: 150 – 264
- КПД при номинальной выходной мощности, %, не менее: 90
- Пределы задания выходного тока, %: 0 – 100
- Пределы регулирования потенциала защищаемого сооружения (с омической составляющей), В: от -0,5 до -4,0
- Пределы регулирования поляризационного потенциала защищаемого подземного стального сооружения, В: от -0,5 до -2,5

* По согласованию с заказчиком возможно изготовление НГК-ИПКЗ-Еврор климатического исполнения и категории размещения УХЛ1

УСЛОВИЯ ЭКСПЛУАТАЦИИ

- Температура окружающего воздуха, ºC: от -45 до +45
- Относительная влажность воздуха при t= +25 ºC, %, не более: 98
- Атмосферное давление, кПа (мм рт. ст.): 84,0 – 106,7 (630 – 800)
Комплекс модульного оборудования ЭХЗ НГК-ИПКЗ-Евро

Комплекс модульного оборудования ЭХЗ НГК-ИПКЗ-Евро построен на базе импульсных преобразователей и предназначен для электрохимической защиты наружных поверхностей подземных стальных сооружений от почвенной коррозии, сбора и обработки информации о коррозионных процессах и противокоррозионной защите и передачи этой информации по цифровому интерфейсу (RS-485/Fiber optic (ВОЛС)/GSM) в системы телемеханики. Комплекс модульного оборудования ЭХЗ обеспечивает режимы телеметрии (ТМ), телесигнализации (ТС), телеуправления (ТУ) и телерегулирования (ТР). КМО НГК-ИПКЗ-Евро соответствует требованиям ГОСТ Р 51164-98, ВТТ к модульным станциям катодной защиты и СТО Газпром 9.4-023-2013.

КМО НГК-ИПКЗ-Евро позволяет производить мониторинг коррозионных процессов в одной точке - точке дренажа. Для увеличения количества точек коррозионного мониторинга (до 32) необходимо использовать подсистему НГК-СКМ. Возможно увеличение количества точек мониторинга более 32-х путем установки дополнительных модулей НГК-КССМ.

ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ

Электрохимическая защита наружных поверхностей подземных стальных сооружений от почвенной коррозии, с возможностью:

- обеспечения 100 % резервирования СКЗ
- автоматической стабилизации тока катодной защиты
- автоматической стабилизации потенциала с омической составляющей защищаемого подземного стального сооружения
- автоматической стабилизации поляризационного потенциала защищаемого подземного стального сооружения
- автоматического перехода в режим стабилизации тока катодной защиты из режима стабилизации потенциала при обрыве в цепи электрода сравнения
- автоматической стабилизации выходного напряжения (при проведении интенсивных измерений)
- защиты от импульсных перенапряжений по всем цепям внешней коммутации
- автоматического переключения на резервную линию питания
- сбора и обработки информации о коррозионных процессах и противокоррозионной защите, отображения на дисплее модуля управления и передачи этой информации по цифровому интерфейсу RS-485/ВОЛС/GSM в системы телемеханики
- дистанционного контроля несанкционированного доступа в шкаф КМО
- поддержки работы с индикаторами коррозионных процессов с помощью УС ИНП СТ
- интеграции в подсистему контроля и управления средствами защиты от коррозии

Модули преобразователя выполнены в соответствии с ГОСТ 28601.3-90
СОСТАВ

В комплект поставки КМО НГК-ИПКЗ-Евро входит следующее оборудование и модули:

- Шкаф 19" монтажный по ГОСТ 28601.2-90 1 шт.
- Преобразователь катодной защиты НГК-ИПКЗ-Евро (основной и резервный) 2 шт.
- Модуль автоматического включения резервной СНЗ (БАВР) 1 шт.
- Комплект устройств защиты от импульсных перенапряжений (УЗИП) 1 комплект
- Счётчик активной электроэнергии основной линии ~230 В 1 шт.
- Система автоматического переключения на резервную линию ~230 В* 1 шт.
- Счётчик активной электроэнергии резервной линии ~230 В* 1 шт.
- Модуль аккумуляторных батарей АКБ* 1 шт.
- Система принудительной вентиляции шкафа* 1 шт.
- Подставка для шкафа* 1 шт.
- НГК-ИП-А* по карте заказа КМО НГК-ИПКЗ-Евро
- НГК-ИП-С(ИП)* по карте заказа КМО НГК-ИПКЗ-Евро
- Подсистема дистанционного коррозионного мониторинга НГК-СКМ* 1 шт.
- НГК-ИП-СМ(ИП)* по карте заказа КМО НГК-ИПКЗ-Евро

*оборудование поставляется дополнительно согласно Карте заказа

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Напряжение питающей сети переменного тока частотой 50 Гц (± 5 Гц), при котором обеспечивается безаварийное функционирование, В 150 – 264

Напряжение питающей сети постоянного тока, при котором обеспечивается безаварийное функционирование НГК-ИПКЗ-Евро(ПП), В 18 – 60

НПД при номинальной выходной мощности, %, не менее 90

Пределы задания выходного тока, % 0 – 100

Пределы регулирования потенциала защищаемого оборудования (с омической составляющей), В от -0,5 до -4,0

Пределы регулирования поляризационного потенциала защищаемого подземного стального оборудования, В от -0,5 до -2,5

Варианты климатического исполнения и категории размещения У1 (шкаф по ГОСТ 14254-2015 со степенью защиты, обеспечиваемую оболочкой не менее IP34) и U2 (шкаф по ГОСТ 14254-2015 со степенью защиты, обеспечиваемую оболочкой не менее IP20) по ГОСТ 15150-69.*

* По согласованию с заказчиком возможно изготовление НГК-ИПКЗ-Евро климатического исполнения и категории размещения УХЛ1.
<table>
<thead>
<tr>
<th>КМО</th>
<th>Номинальное выходное напряжение, В</th>
<th>Номинальная выходная мощность, кВт</th>
<th>Номинальный суммарный выходной ток при номинальном выходном напряжении, А</th>
<th>Полная потребляемая мощность, кВ-А, не более</th>
<th>Габаритные размеры (В х Ш х Г), мм, не более</th>
<th>Масса, кг, не более</th>
</tr>
</thead>
<tbody>
<tr>
<td>НГК-ИПКЗ-Евро-0,2(24)</td>
<td>24</td>
<td>0,2</td>
<td>8,0</td>
<td>0,25</td>
<td>1265x600x450</td>
<td>75(100)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-0,4(24)</td>
<td>24</td>
<td>0,4</td>
<td>16,0</td>
<td>0,48</td>
<td>1265x600x450</td>
<td>77,5(102,5)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-0,6(24)</td>
<td>24</td>
<td>0,6</td>
<td>24,0</td>
<td>0,70</td>
<td>1265x600x450</td>
<td>80(105)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-0,8(24)</td>
<td>24</td>
<td>0,8</td>
<td>32,0</td>
<td>0,93</td>
<td>1265x600x450</td>
<td>82,5(107,5)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-0,2(48)</td>
<td>48</td>
<td>0,2</td>
<td>4,0</td>
<td>0,25</td>
<td>1265x600x450</td>
<td>75(100)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-0,4(48)</td>
<td>48</td>
<td>0,4</td>
<td>8,0</td>
<td>0,48</td>
<td>1265x600x450</td>
<td>77,5(102,5)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-0,6(48)</td>
<td>48</td>
<td>0,6</td>
<td>12,0</td>
<td>0,70</td>
<td>1265x600x450</td>
<td>80(105)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-0,8(48)</td>
<td>48</td>
<td>0,8</td>
<td>16,0</td>
<td>0,93</td>
<td>1265x600x450</td>
<td>82,5(107,5)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-1,0(48)</td>
<td>48</td>
<td>1,0</td>
<td>21,0</td>
<td>1,14</td>
<td>1405x600x450</td>
<td>80(105)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-2,0(48)</td>
<td>48</td>
<td>2,0</td>
<td>42,0</td>
<td>2,25</td>
<td>1405x600x450</td>
<td>90(115)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-3,0(48)</td>
<td>48</td>
<td>3,0</td>
<td>63,0</td>
<td>3,36</td>
<td>1405x600x450</td>
<td>100(125)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-4,0(48)</td>
<td>48</td>
<td>4,0</td>
<td>84,0</td>
<td>4,47</td>
<td>1675x600x450</td>
<td>120(145)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-5,0(48)</td>
<td>48</td>
<td>5,0</td>
<td>104,0</td>
<td>5,58</td>
<td>1675x600x450</td>
<td>130(155)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-1,0(96)</td>
<td>96</td>
<td>1,0</td>
<td>10,5</td>
<td>1,14</td>
<td>1405x600x450</td>
<td>80(105)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-2,0(96)</td>
<td>96</td>
<td>2,0</td>
<td>21,0</td>
<td>2,25</td>
<td>1405x600x450</td>
<td>90(115)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-3,0(96)</td>
<td>96</td>
<td>3,0</td>
<td>31,5</td>
<td>3,36</td>
<td>1405x600x450</td>
<td>100(125)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-4,0(96)</td>
<td>96</td>
<td>4,0</td>
<td>42,0</td>
<td>4,47</td>
<td>1675x600x450</td>
<td>120(145)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-5,0(96)</td>
<td>96</td>
<td>5,0</td>
<td>52,0</td>
<td>5,58</td>
<td>1675x600x450</td>
<td>130(155)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-1,25(48)</td>
<td>48</td>
<td>1,25</td>
<td>26,1</td>
<td>1,39</td>
<td>1405x600x450</td>
<td>85(110)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-2,5(48)</td>
<td>48</td>
<td>2,5</td>
<td>52,2</td>
<td>2,75</td>
<td>1405x600x450</td>
<td>95(120)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-3,75(48)</td>
<td>48</td>
<td>3,75</td>
<td>78,3</td>
<td>4,11</td>
<td>1675x600x450</td>
<td>125(150)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро-5,0(48)</td>
<td>48</td>
<td>5,0</td>
<td>104,0</td>
<td>5,58</td>
<td>1675x600x450</td>
<td>135(160)</td>
</tr>
</tbody>
</table>

Масса в скобках: полная комплектация с подсистемой НГК-СКМ и модулем АНБ БУ и СКМ.
1 КМО построен на базе модулей силовых НГК-БП-Евро-0,2(24) выходной мощностью 0,2 кВт.
2 КМО построен на базе модулей силовых НГК-БП-Евро-0,4(24) выходной мощностью 0,4 кВт.
3 КМО построен на базе модулей силовых НГК-БП-Евро-1,0(48) выходной мощностью 1,0 кВт.
4 КМО построен на базе модулей силовых НГК-БП-Евро-1,0(96) выходной мощностью 1,0 кВт.
5 КМО построен на базе модулей силовых НГК-БП-Евро-1,25(48) выходной мощностью 1,25 кВт.

<table>
<thead>
<tr>
<th>КМО</th>
<th>Номинальное выходное напряжение, В</th>
<th>Номинальная выходная мощность, кВт</th>
<th>Номинальный суммарный выходной ток при номинальном выходном напряжении, А</th>
<th>Полная потребляемая мощность, кВ-А, не более</th>
<th>Габаритные размеры (В х Ш х Г), мм, не более</th>
<th>Масса, кг, не более</th>
</tr>
</thead>
<tbody>
<tr>
<td>НГК-ИПКЗ-Евро(ПТ)-0,2(24)</td>
<td>24</td>
<td>0,2</td>
<td>8</td>
<td>0,24</td>
<td>1000x600x450</td>
<td>35(36)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро(ПТ)-0,4(24)</td>
<td>24</td>
<td>0,4</td>
<td>16</td>
<td>0,48</td>
<td>1000x600x450</td>
<td>36(37)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро(ПТ)-0,6(24)</td>
<td>24</td>
<td>0,6</td>
<td>24</td>
<td>0,71</td>
<td>1000x600x450</td>
<td>37(38)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро(ПТ)-0,8(24)</td>
<td>24</td>
<td>0,8</td>
<td>32</td>
<td>0,95</td>
<td>1000x600x450</td>
<td>38(39)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро(ПТ)-0,2(48)</td>
<td>48</td>
<td>0,2</td>
<td>4</td>
<td>0,24</td>
<td>1000x600x450</td>
<td>35(36)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро(ПТ)-0,4(48)</td>
<td>48</td>
<td>0,4</td>
<td>8</td>
<td>0,48</td>
<td>1000x600x450</td>
<td>36(37)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро(ПТ)-0,6(48)</td>
<td>48</td>
<td>0,6</td>
<td>12</td>
<td>0,71</td>
<td>1000x600x450</td>
<td>37(38)</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Евро(ПТ)-0,8(48)</td>
<td>48</td>
<td>0,8</td>
<td>16</td>
<td>0,95</td>
<td>1000x600x450</td>
<td>38(39)</td>
</tr>
</tbody>
</table>

Масса в скобках: полная комплектация с подсистемой НГК-СКМ.
1 КМО построен на базе модулей силовых НГК-БП-Евро(ПТ)-0,2(24) выходной мощностью 0,2 кВт.
2 КМО построен на базе модулей силовых НГК-БП-Евро(ПТ)-0,2(48) выходной мощностью 0,2 кВт.
УСЛОВНОЕ ОБОЗНАЧЕНИЕ

При оформлении заказа на КМО НГК-ИПКЗ-Евро используется условное обозначение:

КМО НГК-ИПКЗ-Евро(ПТ)(XН)-5,0(48)-У2-М64(10), где:

КМО
Комплекс модульного оборудования ЭХЗ;

НГК
Аббревиатура предприятия-изготовителя;

ИПКЗ
Импульсный преобразователь катодной защиты;

Евро
Конструктивное исполнение шкафа по ГОСТ 28601.2-90 и модулей по ГОСТ 28601.3-90;

(ПТ)
Включается в обозначение только для напряжения питания постоянного тока.

(ХН)
Включается в обозначение только при исполнении «многоканальный». X – количество независимых каналов, работающих каждый на свою нагрузку: от 2-х до 6

5,0
Номинальная выходная мощность в киловаттах (0,2; 0,4; 0,6; 0,8; 1,0; 1,25; 2,0; 2,5; 3,0; 3,75; 4,0; 5,0 кВт);

(48)
Номинальное выходное напряжение в вольтах (24; 48; 96 В);

У2
Климатическое исполнение и категория размещения по ГОСТ 15150-69 (У1; У2);

М
(и все следующие параметры) включаются в обозначение только при комплектовании подсистемой дистанционного коррозионного мониторинга НГК-СКМ;

64
Количество устройств коррозионного мониторинга в НГК-СКМ (НГК-КИП-СМ(ИКП)) от 1 до 64 шт.;

(10)
Количество линий подключения к НГК-КИП (лучей) в НГК-СКМ от 1 до 10.
Комплекс модульного оборудования ЭХЗ многоканальный НГК-ИПКЗ-Евро

Комплекс модульного оборудования ЭХЗ НГК-ИПКЗ-Евро построен на базе импульсных преобразователей, работающих на раздельные нагрузки и предназначен для электрохимической защиты наружных поверхностей подземных стальных сооружений от почвенной коррозии, сбора и обработки информации о коррозионных процессах и противокоррозионной защите и передачи этой информации по цифровому интерфейсу (RS-485/Fiber optic(ВОЛС)/GSM) в системы телемеханики. Комплекс модульного оборудования поддерживает режимы телеметрии (ТИ), телесигнализации (ТС), телеуправления (ТУ) и телерегулирования (ТР).

Комплекс соответствует требованиям ГОСТ Р 51164-98, ВТТ к модульным станциям катодной защиты и СТО Газпром 9.4-023-2013. Комплекс модульного оборудования многоканальный позволяет производить мониторинг коррозионных процессов в точке дренажа (для каждого канала). Для увеличения количества точек коррозионного мониторинга (до 32) необходимо использовать подсистему НГК-СКМ. Возможно увеличение количества точек мониторинга более 32-х путем установки дополнительных модулей НГК-КССМ.

ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ

Электрохимическая защита наружных поверхностей подземных стальных сооружений от коррозии, с возможностью:
- работы на несколько независимых нагрузок (каналов)
- обеспечения 100 % резервирования каждого канала
- автоматической стабилизации тока катодной защиты для каждого канала
- автоматической стабилизации потенциала с омической составляющей защищаемого подземного стального сооружения для каждого канала
- автоматической стабилизации поляризационного потенциала защищаемого подземного стального сооружения для каждого канала
- автоматического перехода в режим стабилизации тока катодной защиты из режима стабилизации потенциала при обрыве в цепи электрода сравнения для каждого канала
- автоматической стабилизации выходного напряжения (при проведении интенсивных измерений)
- защиты от импульсных перенапряжений по всем цепям внешней коммутации
- автоматического переключения на резервную линию питания;
- сбора и обработки информации о коррозионных процессах и противокоррозионной защите, отображения на дисплее модуля управления и передачи этой информации по цифровому интерфейсу RS-485/ВОЛС/GSM в системы телемеханики
- дистанционного контроля несанкционированного доступа в шкаф
- поддержки работы с индикаторами коррозионных процессов ИКП
- интеграции в подсистему контроля и управления средствами защиты от коррозии

Модули преобразователя выполнены в соответствии с ГОСТ 28601.3-90
ОБОРУДОВАНИЕ

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Количество независимых нагрузок (каналов) 2 – 6*

Напряжение питания сети переменного тока частотой 50 Гц (± 5 Гц), при котором обеспечивается безаварийное функционирование, В 150 – 264

КПД при номинальной выходной мощности, %, не менее 90

Пределы задания выходного тока для каждого канала, % 0 – 100

Пределы регулирования потенциала защищаемого содержания, с (омическая составляющая), В от -0,5 до -4,0

Пределы регулирования поляризационного потенциала защищаемого подземного стального сооружения, В от -0,5 до -2,5

Варианты климатического исполнения и категории размещения У1 (шкаф по ГОСТ 14254-2015 со степенью защиты, обеспечиваемую оболочкой не менее IP34) и У2 (шкаф по ГОСТ 14254-2015 со степенью защиты, обеспечиваемую оболочкой не менее IP20) по ГОСТ 15150-69.*

* Возможно изготовление многоканального КМО НГК-ИПКЗ-Европ на базе модулей силовых НГК-БП-Европ-0,2(48) или НГК-БП-Европ-0,4(48) выходной мощностью 200 Вт. Номинальная выходная мощность канала танк КМО - 0,2; 0,4; 0,6; 0,8 кВт.

<table>
<thead>
<tr>
<th>Наименование</th>
<th>Номинальная выходная мощность, кВт</th>
<th>Номинальное напряжение канала, В</th>
<th>Номинальный суммарный выходной ток канала, А</th>
<th>Полная потребляемая мощность, кВА, не более</th>
</tr>
</thead>
<tbody>
<tr>
<td>НГК-ИПКЗ-Европ(2Н)-1,0(48)</td>
<td>1</td>
<td>48</td>
<td>21,0</td>
<td>2,28</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Европ(2Н)-1,25(48)</td>
<td>1,25</td>
<td>48</td>
<td>26,1</td>
<td>2,78</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Европ(2Н)-2,0(48)</td>
<td>2</td>
<td>48</td>
<td>42,0</td>
<td>4,50</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Европ(2Н)-2,5(48)</td>
<td>2,5</td>
<td>48</td>
<td>52,2</td>
<td>5,50</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Европ(2Н)-3,0(48)</td>
<td>3</td>
<td>48</td>
<td>63,0</td>
<td>6,72</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Европ(2Н)-1,0(96)</td>
<td>1</td>
<td>96</td>
<td>10,5</td>
<td>2,28</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Европ(2Н)-2,0(96)</td>
<td>2</td>
<td>96</td>
<td>21,0</td>
<td>4,50</td>
</tr>
<tr>
<td>НГК-ИПКЗ-Европ(2Н)-3,0(96)</td>
<td>3</td>
<td>96</td>
<td>31,5</td>
<td>6,72</td>
</tr>
</tbody>
</table>

Ширина и глубина КМО НГК-ИПКЗ-Европ исполнения У1 - 1675х600х650
Масса полной комплектации КМО и подсистемой НГК-СКМ и модемом АКБ БУ и СКМ - 145/170 кг.

| Наименование | Номинальное выходное напряжение, В | Номинальная выходная мощность канала, кВт | Номинальный суммарный выходной ток канала, А |
|--------------|-----------------------------------|---------------------------------|---------------------------------|--|
| НГК-ИПКЗ-Европ(ХН)-0,2(48) | 48 | 0,2 | 4 (8)* |
| НГК-ИПКЗ-Европ(ХН)-0,4(48) | | 0,4 | 8 (16)* |
| НГК-ИПКЗ-Европ(ХН)-0,6(48) | | 0,6 | 12 (24)* |
| НГК-ИПКЗ-Европ(ХН)-0,8(48) | | 0,8 | 16 (32)* |

Где Х – количество каналов от 2 до 6.
* Ток в скобках указан для выходного напряжения 24 В.

УСЛОВИЯ ЭКСПЛУАТАЦИИ

Температура окружающего воздуха, °C от -45 до +45

Относительная влажность воздуха при t= +25 °C, %, не более 98

Атмосферное давление, кПа (мм рт. ст.) 84,0 – 106,7 (630 – 800)
Подсистема дистанционного коррозионного мониторинга НГК-СКМ

Подсистема дистанционного коррозионного мониторинга НГК-СКМ (далее по тексту подсистема НГК-СКМ) предназначена для сбора и обработки информации о коррозионных процессах и противокоррозионной защите наружных поверхностей подземных стальных сооружений и передачи этой информации по цифровому интерфейсу (РС-485/Fiber optic (ВОЛС)/GSM) в системы телемеханики.

Область применения — объекты добычи, транспортировки, хранения природного газа и нефтепродуктов, магистральные трубопроводы, промплощадки, компрессорные станции, подземные хранилища газа и другие. Подсистема НГК-СКМ является составной частью системы электрохимической защиты от коррозии и может поставляться как в составе НГК-ИПКЗ-Европа, так и в виде отдельной подсистемы. Возможна интеграция подсистемы НГК-СКМ с НГК-ПДКУ и в подсистему контроля и управления средствами защиты от коррозии.

ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ

Измерение, контроль с 321 НГК-КИП-СМ(ИКП) или НГК-КИП-М(ИКП) и передача по цифровому интерфейсу в системы телемеханики (протокол Modbus) следующих параметров:
- поляризационный потенциал подземного трубопровода по методу вспомогательного электрода по ГОСТ 9.602-2005 в диапазоне от -2 В до +2 В
- защитный потенциал в диапазоне от -10 В до +10 В
- ток катодной защиты в точке дренажа от 0 до 50 А методом измерения напряжения на внешнем шунте
- ток поляризации вспомогательного электрода в диапазоне от -5 мА до +5 мА
- состояние пластин датчиков скорости коррозии
- глубину и скорость коррозии датчика ИКП с устройством УС ИКП ST
- вскрытие НГК-КИП

1 Возможно увеличение количества точек мониторинга путем установки дополнительных НГК-КССМ. Максимальное количество точек мониторинга можно увеличивать кратно 32 шт.

УСЛОВИЯ ЭКСПЛУАТАЦИИ

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Ограничение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Температура окружающего воздуха, °C</td>
<td>от -45 до +45</td>
</tr>
<tr>
<td>Относительная влажность воздуха при t= +25 °C, %, не более</td>
<td>98</td>
</tr>
<tr>
<td>Атмосферное давление, кПа (мм рт. ст.)</td>
<td>84,0 – 106,7 (630 – 800)</td>
</tr>
</tbody>
</table>
СОСТАВ
В состав подсистемы мониторинга входят следующие оборудование и модули:

Шкаф 19" монтажный по ГОСТ 28601.2-90
1 шт.

Модуль сопряжений подсистемы мониторинга НГК-КССМ
1 шт.

Устройства коррозионного мониторинга НГК-КИП-М(ИКП) и НГК-КИП-СМ(ИКП)
1 – 32 шт.

Система защиты от импульсных перенапряжений УЗИП
1 шт.

Модуль АКБ СКМ
1 шт.

Счётчик активной электрозnergieи ~230 В
1 шт.

Подставка для шкафа
1 шт.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Максимальное количество НГК-КИП-М(ИКП) и НГК-КИП-СМ(ИКП) в подсистеме
32

Максимальное количество линий подключения к НГК-КИП (лучей) в подсистеме
5

Максимальная дальность размещения НГК-КИП-М(ИКП) или НГК-КИП-СМ(ИКП) от шкафа с НГК-КССМ, км
5

Напряжение питающей сети переменного тока частотой 50 Гц (≤5 Гц), при котором обеспечивается безаварийное функционирование НГК-СКМ, В
150 – 264

Напряжение питающей сети постоянного тока, при котором обеспечивается безаварийное функционирование НГК-СКМ(ПТ), В
18 – 60

Потребляемая мощность для НГК-СКМ с АКБ СКМ, В·А, не более
282

Потребляемая мощность для НГК-СКМ(ПТ), Вт, не более
39

Входное сопротивление каналов измерения, МОм, не менее
10

Габаритные размеры шкафа (шхвхг), мм
610х750х480

Масса шкафа НГК-СКМ, кг, не более
65

Варианты климатического исполнения и категории размещения У1 (шкаф по ГОСТ 14254-2015 со степенью защиты, обеспечивающую оболочкой не менее IP34) и У2 (шкаф по ГОСТ 14254-2015 со степенью защиты, обеспечивающую оболочкой не менее IP20) по ГОСТ 15150-69.*

* По согласованию с заказчиком возможно изготовление НГК-СКМ климатического исполнения и категории размещения УХЛ1.

1 Возможно увеличение количества точек мониторинга и количества лучей в подсистеме. Максимальное количество точек мониторинга можно увеличивать кратно 32 шт., а количество лучей кратно 5.

2 При поставке подсистемы мониторинга в составе НГК-ИПКЗ-Европодсистема располагается в шкафе НГК-ИПКЗ-Европодсистемы соответствующего климатического исполнения.

3 Оборудование поставляется опционально согласно Карте заказа.
Подсистема дистанционного коррозионного мониторинга НГК-СКМ(У)

Подсистема дистанционного коррозионного мониторинга НГК-СКМ(У) (далее по тексту подсистема НГК-СКМ(У)) предназначена для сбора и обработки информации о коррозионных процессах и противокоррозионной защите подземных стальных сооружений и передачи этой информации по цифровому интерфейсу (RS-485/Fiber optic (ВОЛС)/GSM) в системы телемеханики. Область применения: объекты добычи, транспортировки, хранения природного газа и нефтепродуктов, магистральные трубопроводы, промплощадки, компрессорные станции, подземные хранилища газа и другие.

Подсистема мониторинга обеспечивает связь по проводным линиям, ВОЛС и радиоканалу с устройствами коррозионного мониторинга, которые могут быть оснащены электродами сравнения с вспомогательными электродами, датчиками скорости и глубины коррозии, датчиками температуры и является частью системы электрохимической защиты от коррозии.

Подсистема мониторинга соответствует требованиям СТО Газпром 9.4-023-2013, ГОСТ Р 51164-98.

СОСТАВ

В состав подсистемы мониторинга входят следующие оборудование и модули:

Шкаф 19" монтажный (по ГОСТ 28601.2-90) IP20	1 шт.
Модуль сопряжений подсистемы мониторинга НГК-КССМ(У)	1 шт.
Устройства коррозионного мониторинга НГК-КИП-СМ(У)	1 – 160 шт.*
Шлюз интерфейсов	1 – 4 шт.
Система защиты от импульсных перенапряжений	1 шт.
Модуль ИБП	2 – 4 шт.*
Счётчик активной электроэнергии ~230 В	1 шт.*
Подставка для шкафа НГК-СКМ(У)	1 шт.*

* Оборудование поставляется опционально согласно Карте заказа.

УСЛОВИЯ ЭКСПЛУАТАЦИИ

Температура окружающего воздуха для климатического исполнения У2, °С	от -45 до +45
Температура окружающего воздуха для климатического исполнения У3.1, °С	от -10 до +40
Относительная влажность воздуха при t= +25 °С, %, не более	98
Атмосферное давление, кПа (мм рт. ст.)	84,0 – 106,7 (630 – 800)
ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ

Измерение, контроль с 160 НГК-КИП-СМ(У) и передача по цифровому интерфейсу в системе телемеханики (протокол Modbus) следующих параметров:
- потенциал с омической составляющей в диапазоне от минус 10 до +10 В;
- поляризационный потенциал подземного трубопровода по методу вспомогательного электрода по ГОСТ 9.602-2005 (приложение Р) в диапазоне от -2 до +2 В;
- постоянный ток от 0 до 150 А методом измерения напряжения на внешнем шунте;
- ток поляризации вспомогательного электрода в диапазоне от -5 до +5 мА;
- плотность тока поляризации вспомогательного электрода в диапазоне от 0 до 3000 А/м²;
- площадь вспомогательного электрода от 0 до 65534 мм²;
- состояние пластин индикаторов скорости коррозии БПИ-2;
- глубину и скорость коррозии индикатора ИКП с устройства УС ИКП СТ;
- состояние устройства УС ИКП СТ;
- ток датчиков интерфейса 4-20 мА;
- среднеквадратичное значение наведённого переменного напряжения на трубопроводе от 0 до 50 В частотой 50 Гц;
- вскрытие НГК-КИП-СМ(У).

Просмотр вышеперечисленных параметров на встроенном дисплее модуля сопряжений НГК-КССМ(У).

Отображение состояния плат измерения НГК-БИ(У) на встроенном дисплее модуля сопряжений НГК-КССМ(У).

Обмен данными с системой телемеханики при отсутствии питающей сети ~230 В в течение 24 часов¹.

Работа НГК-КИП-СМ(У) от автономного источника питания не менее двух лет.

Защита линий связи и питаания от импульсных перенапряжений.

Схемы соединения шкафа НГК-СМ(У) и устройств коррозионного мониторинга НГК-КИП-СМ(У):
- подключение по каналу связи CAN (для промплощадок, компрессорных станций, станций подземного хранения газа) в котором устройства присоединяются к шине последовательно без ответвлений (максимальное количество каналов связи CAN до 4), на один канал связи CAN может быть подключено различное количество устройств НГК-КИП-СМ(У)-3 (до 32 устройств на один канал связи);
- подключение по ВОЛС (магистральные газопроводы, отводы) в котором к шкафу НГК-СМ(У) подключается устройство коррозионного мониторинга НГК-КИП-СМ(У)-1 с автономным питанием (максимальное количество ВОЛС до 32. Максимальное расстояние до 40 км);
- подключение по каналу связи RS-485 (магистральные газопроводы, отводы) в котором к каждому устройству коррозионного мониторинга НГК-КИП-СМ(У)-1 или НГК-КИП-СМ(У)-4 может быть подключено до 5 устройств НГК-КИП-СМ(У)-2 с автономным питанием. Максимальное расстояние канала связи RS-485 до 500 м.
- подключение по радиоканалу (для промплощадок, пересечения с водными объектами) в котором к одному шкафу НГК-СМ(У) может подключаться до 160 устройств НГК-КИП-СМ(У)-4 с автономным питанием. Максимальное расстояние до 10 км, и зависит от уровня индустриальных помех в месте установки.

Электропитание устройств НГК-КИП-СМ(У)-3 осуществляется напряжением постоянного тока по проводам от встроенного в НГК-КССМ(У) источника питания. ¹Оборудование устанавливается опционально.
ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Максимальное количество НГК-КИП-СМ(У) в подсистеме, шт. 160
Максимальная дальность размещения НГК-КИП-СМ(У)
от шкафа НГК-СКМ(У), км:
 связь по проводному каналу связи CAN 3
 связь по ВОЛС 40
 связь по радиоканалу 10
Максимальная дальность размещения НГК-КИП-СМ(У)-2
от НГК-КИП-СМ(У)-1 или НГК-КИП-СМ(У)-4, км:
 связь по проводному каналу связи RS-485 0,5
Напряжение питающей сети переменного однофазного тока
частотой 50 Гц, при котором обеспечивается работоспособность
НГК-СКМ(У), В 165 — 253
Полная потребляемая мощность, В·А, не более 282
Сопротивление изоляции шкафа
по ГОСТ 26567-85, МОм, не менее 20
Габаритные размеры шкафа (ш×в×г), мм, не более 600×1600×450
Масса НГК-СКМ(У), кг, не более 150
* По согласованию с заказчиком возможно изготовление НГК-СКМ(У) климатического исполнения и категории размещения УХЛ1.

УСЛОВНОЕ ОБОЗНАЧЕНИЕ

При оформлении заказа на НГК-СКМ используется условное обозначение:

НГК-СКМ(У)-1-2-3(4)-5-У3.1, где:

НГК Аббревиатура предприятия-изготовителя;
СКМ(У) Подсистема дистанционного коррозионного мониторинга;
1 Количество устройств коррозионного мониторинга
НГК-КИП-СМ(У)-1 в подсистеме (до 32 шт.);
2 Количество устройств коррозионного мониторинга
НГК-КИП-СМ(У)-2 в подсистеме (до 128 шт.);
3 Количество устройств коррозионного мониторинга
НГК-КИП-СМ(У)-3 в подсистеме (до 128 шт.);
(4) Количество линий подключения устройств
коррозионного мониторинга
НГК-КИП-СМ(У)-3 (1-4 шт.);
5 Количество устройств коррозионного мониторинга
НГК-КИП-СМ(У)-4 в подсистеме (до 160 шт.);
У3.1 Климатическое исполнение шкафа подсистемы
dистанционного коррозионного мониторинга
по ГОСТ 15150-69 (У2; У3.1).
Устройство коррозионного мониторинга НГК-КИП

НГК-КИП устанавливаются под землей в трубопроводах:
- на прямых участках в пределах видимости, но не реже чем через 500 – 1000 м (в зависимости от коррозионной опасности участка подземных коммуникаций);
- в местах поворота трассы подземных коммуникаций;
- по обе стороны от мест пересечения трассы подземных коммуникаций с искусственными и естественными препятствиями (дорогами, реками и т. п.);
- в местах подключения дренажного натяжения подземным коммуникациям;
- в местах установки изолирующих фланцевых соединений;
- в местах пересечения с трамвайками других наложенных подземных коммуникаций;
- и в других местах, определяемых при проектировании систем ЭХЗ.

УСЛОВНОЕ ОБОЗНАЧЕНИЕ

НГК-КИП-СМ(У)(4)-2.1/20(Ж)-У1, где:

НГК КИП

аббревиатура предприятия-изготовителя;

контрольно-измерительный пункт;

установка коррозионного мониторинга точки дренажа и мониторинга коррозионных процессов. (Варианты значений: М – установка коррозионного мониторинга коррозионных процессов подключаемая к подсистеме НГК-СКМ; СМ(ИП) – установка коррозионного мониторинга точки дренажа и мониторинга коррозионных процессов с поддержкой устройства УС ИП СТ подключаемое к подсистеме НГК-СКМ; СМ(У) – установка коррозионного мониторинга точки дренажа и мониторинга коррозионных процессов подключаемое к подсистеме НГК-СКМ(У).

(4)

количество каналов многофункционального НГК-КИП.

2

tип линии связи для передачи данных от НГК-КИП. (Варианты значений: 0 – данные считаются через сервисный порт устройства; 1 – установка коррозионного мониторинга, подключаемое по ВОЛС; 2 – установка коррозионного мониторинга с каналом связи RS-485; 3 – устройство коррозионного мониторинга с каналом связи CAN; 4 – устройство коррозионного мониторинга с радиоканалом.)

.1

вариант исполнения корпуса НГК-КИП. (Варианты значений: 01 – корпус выполнен в виде стойки КИП; 02 – корпус выполнен в виде металлического шкафа.)

/20

номинал шунта в амперах. Значение указывается только для модификации НГК-КИП-СМ(У). (Варианты значений: /0 – без шунта; /10 – номинал шунта 10 А; /20 – номинал шунта 20 А; /30 – номинал шунта 30 А; /50 – номинал шунта 50 А.)

(Ж)

цвет колпака устройства коррозионного мониторинга. (Варианты значений: Ж – колпак жёлтого цвета; С – колпак синего цвета; З – колпак зелёного цвета; К – колпак красного цвета.)

У1

климатическое исполнение и категория размещения устройства коррозионного мониторинга по ГОСТ 15150-69.
Подсистема дистанционного контроля и управления средствами ЭХЗ НГК-ПДКУ ЭХЗ

Подсистема дистанционного контроля и управления средствами электрохимической защиты подземных сооружений НГК-ПДКУ ЭХЗ является аппаратно-программным комплексом (локальной узловой станцией (ЛУС)) и предназначена для сбора, обработки информации и управления станциями катодной защиты типа НГК-ИПКЗ-Евро, сбора информации с подсистем дистанционного коррозионного мониторинга НГК-СКМ и передачи этой информации в Подсистему контроля и управления средствами защиты от коррозии филиала эксплуатирующей организации ПАО «Газпром».

НГК-ПДКУ ЭХЗ является составной частью системы электрохимической защиты от коррозии. Область применения объекты добычи, транспортировки, хранения природного газа и нефтепродуктов – магистральные трубопроводы, компрессорные станции, промплощадки, подземные хранилища газа и другие.

ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ

НГК-ПДКУ ЭХЗ предназначена для:
- сбора данных о параметрах ЭХЗ по проводным и беспроводным каналам (RS-485, ПВС Ethernet, ВОЛС, GSM) и в ручном режиме;
- дистанционного управления станциями катодной защиты НГК-ИПКЗ-Евро, КМО НГК-ИПКЗ-Евро и другими устройствами, поддерживающим протокол обмена Modbus;
- обмена данными с коммуникационным сервером АСУ ТП;
- формирования базы данных в реальном масштабе времени;
- хранения, обработки, анализа и визуализации данных;
- подготовки информации и обмена со смежными системами (ПКУ СЗК, отраслевыми базами данных, ИУС).

УСЛОВИЯ ЭКСПЛУАТАЦИИ

<table>
<thead>
<tr>
<th>Температура окружающего воздуха, °C</th>
<th>от +10 до +35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Тип атмосферы по ГОСТ 15150-69</td>
<td>II</td>
</tr>
<tr>
<td>Относительная влажность воздуха при t = +25 °C, %, не более</td>
<td>80</td>
</tr>
<tr>
<td>Атмосферное давление, кПа (мм рт. ст.)</td>
<td>84,0 – 106,7 (630 – 800)</td>
</tr>
</tbody>
</table>
СОСТАВ
В состав подсистемы входят следующие оборудование и модули:

<table>
<thead>
<tr>
<th>Описание</th>
<th>Количество</th>
</tr>
</thead>
<tbody>
<tr>
<td>Шкаф 19" монтажный 600х600 (по ГОСТ 28601.1-90) IP20</td>
<td>1 шт.</td>
</tr>
<tr>
<td>Сервер</td>
<td>1 шт.</td>
</tr>
<tr>
<td>Источник бесперебойного питания</td>
<td>1 шт.</td>
</tr>
<tr>
<td>Устройства ввода-вывода информации (сенсорный LCD TFT монитор)</td>
<td>1 шт.</td>
</tr>
<tr>
<td>Устройство ввода информации (клавиатура-выдвижная консоль)</td>
<td>1 шт.</td>
</tr>
<tr>
<td>Многофункциональный преобразователь интерфейсов</td>
<td>0-2 шт.</td>
</tr>
<tr>
<td>Преобразователь интерфейсов RS-485/ВОЛС</td>
<td>0-32 шт.</td>
</tr>
<tr>
<td>Система защиты от импульсных перенапряжений</td>
<td>1 комплект</td>
</tr>
<tr>
<td>Программное обеспечение</td>
<td>1 комплект</td>
</tr>
<tr>
<td>Комплект ЗИП</td>
<td>1 комплект</td>
</tr>
</tbody>
</table>

1 оборудованиепоставляется опционально согласно Карте заказа. По согласованию с заказчиком в комплект поставки могут быть включены дополнительные рабочие станции (персональные компьютеры).

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

<table>
<thead>
<tr>
<th>Характеристика</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Максимальное количество интерфейсных линий связи RS-485/ВОЛС</td>
<td>32 шт.</td>
</tr>
<tr>
<td>Максимальное количество устройств на одной линии</td>
<td>32 шт.</td>
</tr>
<tr>
<td>Максимальная протяженность линии связи витая пара, км, не более</td>
<td>1</td>
</tr>
<tr>
<td>Максимальная протяженность волоконно-оптической линии связи, км, не более</td>
<td>40</td>
</tr>
<tr>
<td>Сетевой интерфейс</td>
<td>Ethernet</td>
</tr>
<tr>
<td>Скорость передачи, Мбит/с</td>
<td>10/100/1000</td>
</tr>
<tr>
<td>Напряжение питания сети переменного однофазного тока \ частотой 50±5 Гц, В</td>
<td>175 - 250</td>
</tr>
<tr>
<td>Полная потребляемая мощность, В·А, не более</td>
<td>600</td>
</tr>
<tr>
<td>Режим работы</td>
<td>круглосуточный</td>
</tr>
<tr>
<td>Габаритные размеры шкафа (шхвхг), мм*</td>
<td>600х1600х600</td>
</tr>
<tr>
<td>Масса, кг, не более</td>
<td>110</td>
</tr>
</tbody>
</table>

Климатическое исполнение УХЛ категория размещения 4.2 (шкаф по ГОСТ 14254-2015 со степенью защиты, обеспечиваемую оболочкой не менее IP20) по ГОСТ 15150-89.

1 По согласованию с заказчиком возможно увеличение количества линий связи.

ЦП (центральный процессор)	Intel Core i3-8100 Coffee Lake 3,6 ГГц
ОЗУ (оперативная память)	8 Гб DDR4
НЖМД (жесткий диск)	2x1000 Гб SATA3 RAID 1 (Mirror)
Операционная система	Windows 10 Pro (x64)
Прикладное программное обеспечение	WEB-браузер, LibreOffice, Программный комплекс «ПДКУ»
Станция катодной защиты НГК-ИПКЗ(М)

Станция катодной защиты НГК-ИПКЗ(М) построена на базе импульсного преобразователя и предназначена для электрохимической защиты подземных стальных сооружений от почвенной коррозии, сбора и обработки информации о коррозионных процессах и противокоррозионной защите и передачи этой информации по интерфейсу RS-485 в системы телемеханики.

СКЗ поддерживает режимы телеметрии, телесигнализации, телеуправления и телерегулирования. СКЗ соответствует требованиям ГОСТ Р 51164-98 и СТО Газпром 9.4-023-2013. СКЗ позволяет производить мониторинг коррозионных процессов в одной точке – точке дренажа.

ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ

Работа в режиме автоматического поддержания тока катодной защиты.
Работа в режиме автоматической стабилизации суммарного или поляризационного потенциала защищаемого сооружения.
Автоматический переход в режим стабилизации выходного тока при обрыве в цепи электрода сравнения.
Работа в режиме стабилизации выходного напряжения (при проведении интенсивных измерений).
Защита от импульсных (грозовых) перенапряжений по всем цепям внешней коммутации.
Измерение, отображение на встроенном индикаторе модуля управления НГК-БУ(М) и передача по интерфейсу RS-485 в систему телемеханики следующих параметров:
• выходной ток катодной защиты преобразователя;
• потенциал (поляризационный, суммарный) сооружения в точке дренажа;
• выходное напряжение преобразователя;
• режим работы преобразователя (стабилизация тока, стабилизация суммарного или поляризационного потенциала, стабилизация выходного напряжения);
• режим управления преобразователем (ручной, дистанционный);
• время защиты сооружения;
• текущие дата и время;
• состояние пластин индикатора скорости коррозии в точке дренажа;
• наличие напряжения питающей сети ~230 В;
• состояние модулей силовых;
• температура в шкафу СКЗ.
Дистанционное управление по интерфейсу RS-485 следующими режимами преобразователя:
• режим работы преобразователя (стабилизация тока катодной защиты, стабилизация суммарного или поляризационного потенциала, стабилизация выходного напряжения);
• включение и выключение режима ожидания преобразователя (выходное напряжение равно нулю, стабилизация не осуществляется).
Дистанционное регулирование по интерфейсу RS-485 следующих параметров:
• выходной ток преобразователя;
• потенциал (поляризационный, суммарный) сооружения.
ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Выходное напряжение, В | 1,5 – 48
Напряжение питающей сети переменного однофазного тока частотой 50 Гц (± 5 Гц), В | 150 – 264
НПД модулей силовых при номинальной выходной мощности, %, не менее | 90
Пределы плавного регулирования выходного тока, % | 5 – 100
Пределы регулирования потенциала защищаемого подземного стального сооружения с омической составляющей, В | от -0,5 до -4,0
Пределы регулирования поляризационного потенциала защищаемого подземного стального сооружения, В | от -0,5 до -2,5

Номинальная выходная мощность, номинальный суммарный выходной ток, полная потребляемая мощность, габаритные размеры и масса СИЗ приведены в таблице.
Вариант климатического исполнения У1 (шкаф ИПЗ по ГОСТ 14254-2015) по ГОСТ 15150-69

<table>
<thead>
<tr>
<th>СИЗ</th>
<th>Номинальная выходная мощность, кВт</th>
<th>Номинальный суммарный выходной ток при номинальном выходном напряжении, A</th>
<th>Полная потребляемая мощность, кВ-А, не более</th>
<th>Габаритные размеры (вх шх г), мм, не более</th>
<th>Масса, кг, не более</th>
</tr>
</thead>
<tbody>
<tr>
<td>НГК-ИПК3(М)-1,0(48)</td>
<td>1,0</td>
<td>21</td>
<td>1,23</td>
<td>1060х600х440</td>
<td>68</td>
</tr>
<tr>
<td>НГК-ИПК3(М)-2,0(48)</td>
<td>2,0</td>
<td>42</td>
<td>2,47</td>
<td>1060х600х440</td>
<td>73</td>
</tr>
<tr>
<td>НГК-ИПК3(М)-3,0(48)</td>
<td>3,0</td>
<td>63</td>
<td>3,70</td>
<td>1060х600х440</td>
<td>78</td>
</tr>
<tr>
<td>НГК-ИПК3(М)-4,0(48)</td>
<td>4,0</td>
<td>84</td>
<td>4,94</td>
<td>1060х600х440</td>
<td>86</td>
</tr>
<tr>
<td>НГК-ИПК3(М)-5,0(48)</td>
<td>5,0</td>
<td>105</td>
<td>6,17</td>
<td>1060х600х440</td>
<td>94</td>
</tr>
</tbody>
</table>

УСЛОВИЯ ЭКСПЛУАТАЦИИ

Температура окружающего воздуха, ºC | от -45 до +45
Относительная влажность воздуха при t= +25 ºC, %, не более | 98
Атмосферное давление, кПа (мм рт. ст.) | 84,0-106,7 (630-800)

СОСТАВ

В комплект НГК-ИПК3(М) входит следующее оборудование:
Шкаф | 1 шт.
Преобразователь катодной защиты | 1 шт.
Комплект устройств защиты от импульсных перенапряжений (УЗИП) | 1 комплект
Станция дренажной защиты НГК-СДЗ

Станция дренажной защиты НГК-СДЗ предназначена для отвода блуждающих токов с подземных стальных сооружений в рельсовую цепь, электрохимической защиты подземных стальных сооружений от почвенной коррозии, сбора и обработки информации о коррозионных процессах и противокоррозионной защите и передачи этой информации по цифровому интерфейсу (RS-485/Fiber optic (ВОЛС)/GSM) в системы телемеханики. Также НГК-СДЗ поддерживает режимы телеизмерения (ТИ), телесигнализации (ТС), телеуправления (ТУ) и телерегулирования (ТР). НГК-СДЗ позволяет производить мониторинг коррозионных процессов в одной точке – точке дренажа. Для увеличения количества точек коррозионного мониторинга (до 32) необходимо использовать подсистему НГК-СКМ. Возможно увеличение количества точек мониторинга путем установки дополнительных модулей НГК-КССМ. Максимальное количество точек мониторинга можно увеличивать кратно 32 шт. НГК-СДЗ соответствует требованиям ГОСТ Р 51164-98, СТО Газпром 9.4-023 и «ВТТ к автоматическим преобразователям катодной защиты».

ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ

Отвод блуждающих токов с подземных стальных сооружений в рельсовую цепь электрифицированной железной дороги.

Генерация токов катодной защиты между подземным стальным сооружением и рельсом электрифицированной железной дороги при отсутствии блуждающих токов в режиме поддержания заданного потенциала или тока в соответствии с ГОСТ Р 51164-98.

Генерация токов катодной защиты между подземным стальным сооружением и анодным заземлителем при отсутствии блуждающих токов в режиме поддержания заданного потенциала или тока в соответствии с ГОСТ Р 51164-98.

Автоматический переход в режим стабилизации тока катодной защиты из режима стабилизации потенциала при обрыве в цепи электрода сравнения.

Устройство, отображение на встроенном индикаторе модуля управления НГК-БУ-Европ и передача по цифровому интерфейсу RS-485/Fiber optic (ВОЛС)/GSM в системы телемеханики основных параметров НГК-СДЗ.

Дистанционное управление по цифровому интерфейсу следующими режимами преобразователя:

- режим работы преобразователя (стабилизация тока, стабилизация потенциала с симметричной составляющей или поляризационного);
- включение и выключение режима охлаждения преобразователя (входное напряжение равно нулю, стабилизация не осуществляется). Передача по цифровому интерфейсу RS-485/Fiber optic (ВОЛС)/GSM сигнала об открытии двери шкафа.

Учёт активной электроэнергии.

Автоматическое восстановление режима работы после восстановления отключенного направления питания сети не более 10 с.

УСЛОВИЯ ЭКСПЛУАТАЦИИ

Температура окружающего воздуха, ºC от -45 до +45

Относительная влажность воздуха при t= +25 ºC, %, не более 98

Атмосферное давление, кПа (мм рт. ст.) 84,0 – 106,7 (630 – 800)
ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Максимальный отводимый ток с трубы на рельс, А, не более 500

Напряжение питающей сети переменного однофазного тока частотой 50 Гц (± 5 Гц), В 150 – 264

Пределы задания тока катодной защиты в режиме стабилизации, % 0 – 100

Отклонение тока катодной защиты от заданного значения в режиме стабилизации тока, при выходных токах 5% ± 100% и выходном напряжении не менее 1,5 В, %, не более 2,5

Отклонение тока катодной защиты от заданного значения в режиме стабилизации тока, при выходных токах 1% ± 5% и выходном напряжении не менее 1,5 В, %, не более 10

Пределы регулирования потенциала защищаемого подземного стального сооружения (с омической составляющей), В от -0,5 до -4,0

Пределы регулирования поляризационного потенциала защищаемого подземного стального сооружения, В от -0,5 до -2,5

Отклонение потенциала подземного стального сооружения от установленного значения, при генерации токов катодной защиты на анодный заземитель, выходном напряжении НГК-ИПКЗ-Евро указанного в таблице, в диапазоне от -0,5 до -4,0 В, %, не более 2,5

Входное сопротивление канала измерения потенциала защищаемого подземного стального сооружения (с омической составляющей), МОм, не менее 10

Допустимое обратное напряжение вентиля поляризованного дренажа, В, не менее 1000

Коэффициент полезного действия НГК-СДЗ в режиме генерации токов катодной защиты, %, не менее 85

Коэффициент мощности, не менее 0,9

Сопротивление балластного резистора при токе 1 А, Ом 0,23±0,05

Охлаждение естественное воздушное

Режим работы непрерывный

Варианты климатического исполнения У категории размещения 1 (шкаф IR34 по ГОСТ 13254-2015 и У категории размещения 2 (шкаф IR20 по ГОСТ 14254-2015) по ГОСТ 15150-68. По согласованию с заказчиком возможно изготовление НГК-СДЗ климатического исполнения УХЛ категории размещения 1.

<table>
<thead>
<tr>
<th>Объект подключения тока катодной защиты</th>
<th>Выходное напряжение, В</th>
<th>Номинальная выходная мощность, кВт</th>
<th>Номинальный ток катодной защиты, А</th>
<th>Полная потребляемая мощность, кВт</th>
<th>Габаритные размеры (В х Ш х Г), мм</th>
<th>Масса, кг, не более</th>
</tr>
</thead>
<tbody>
<tr>
<td>Труба - Рельс</td>
<td>1,5 – 12</td>
<td>1,25</td>
<td>100</td>
<td>1,63</td>
<td>1585×634×634</td>
<td>170(175)</td>
</tr>
<tr>
<td>Труба - Анодный заземлитель</td>
<td>1,5 – 48</td>
<td>5,0</td>
<td>100</td>
<td>5,66</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Номинальный ток катодной защиты возможен только при сопротивлении блока балластных резисторов равном 0 Ом.
2 Масса в спекнов: полная комплектация НГК-СДЗ с подсистемой НГК-СНМ.
3 Возможно изготовление НГК-СДЗ с номинальной выходной мощностью: 0,2; 0,4; 0,6; 0,8; 1,0; 1,25; 2,0; 2,5; 3,0; 3,75; 4,0; 5,0 кВт
Станция катодной защиты СКЗ НГК-ИПКЗ-Евро(МР) предназначена для обеспечения электрохимической защиты стальных гидротехнических сооружений в подводной зоне. СКЗ НГК-ИПКЗ-Евро(МР) построена на базе импульсных преобразователей и позволяет осуществлять сбор и обработку информации о коррозионных процессах и противокоррозионной защите и передавать эту информацию по интерфейсу RS-485/Fiber optic (ВОЛС)/GSM в системы телемеханики. СКЗ НГК-ИПКЗ-Евро(МР) соответствует требованиям ГОСТ 9.602-2016 и ГОСТ Р 51164-98.

ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ

СКЗ НГК-ИПКЗ-Евро(МР) обеспечивает следующие режимы работы:
- автоматического поддержания заданного уровня суммарного потенциала защищаемого сооружения;
- автоматического поддержания заданного уровня выходного тока;
- автоматического поддержания заданного уровня выходного напряжения.

Установка выходных параметров обеспечивается при ручном и дистанционном управлении:
- выходной ток, с дискретностью установки (задания) 0,01 А;
- потенциал на сооружении с дискретностью установки (задания) 0,01 В;
- выходное напряжение, с дискретностью установки (задания) 0,01 В.

Станция позволяет работать со следующими типами электродов сравнения: цинковым (ЦСЭ), медно-сульфатным (МСЭ), хлорсеребряным (ХСЭ).

СКЗ НГК-ИПКЗ-Евро(МР) обеспечивает возможность дистанционной установки (задания) и контроля параметров:

а) дистанционного контроля (телемережения):
- выходного тока;
- выходного напряжения;
- потенциала на защищаемое сооружение;
- напряжения питания;
- потребляемой электроэнергии от встроенного счетчика электроэнергии;
- времени наработки (времени включённого состояния СКЗ МР при подаче на СКЗ МР напряжения питания);
- времени защиты сооружения установленным потенциалом с отклонением не более ± 25 мВ или выходным током с отклонением более 50 %;

б) дистанционного контроля (телесигнализации):
- несанкционированного доступа в шкаф СКЗ НГК-ИПКЗ-Евро(МР) (сигнализации об открытии наружной двери шкафа);
- о действующем режиме работы;
- о действующем режиме управления (местный, дистанционный);
- об обрыве цепей контроля (измерения) потенциала на сооружении от электрода сравнения или защищаемого сооружения;
- о неисправности;
- о рабочем состоянии установленных в СКЗ НГК-ИПКЗ-Евро(МР) силовых модулей;
- о включении в работу основных или резервных силовых модулей (для СКЗ НГК-ИПКЗ-Евро(МР) с резервными силовыми модулями);

в) дистанционной установкой значений параметров (телеуправление):
- суммарного потенциала на сооружении;
- выходного тока;
- выходного напряжения;

г) дистанционного управления (телеуправления):
- отключением/включением силовых модулей;
- дистанционным управлением режимами работы (при включённом режиме дистанционного управления).

Все внешние цепи СКЗ НГК-ИПКЗ-Евро(МР) имеют защиту от импульсных перенапряжений.
ОСНОВНЫЕ ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Номинальное напряжение питающей сети переменного тока (однофазное или трёхфазное без нулевого провода, частотой 50 ± 1 Гц), В</td>
<td>230/380</td>
</tr>
<tr>
<td>Номинальное выходное напряжение, В</td>
<td>12 24</td>
</tr>
<tr>
<td>Номинальный выходной ток силового модуля, А</td>
<td>80 40</td>
</tr>
<tr>
<td>Номинальный выходной ток СКЗ, А</td>
<td>N×80 N×40</td>
</tr>
<tr>
<td>Количество (N) параллельно работающих силовых модулей, шт.</td>
<td>от 1 до 6</td>
</tr>
<tr>
<td>Коэффициент пульсации выходного напряжения, %, не более</td>
<td>3</td>
</tr>
<tr>
<td>КПД при номинальной выходной мощности, %, не менее</td>
<td>85</td>
</tr>
<tr>
<td>Коэффициент мощности, не менее</td>
<td>0,9</td>
</tr>
<tr>
<td>Точность стабилизации тока, %, не более</td>
<td>2,5</td>
</tr>
<tr>
<td>Точность стабилизации потенциала, ± мВ, не более</td>
<td>50</td>
</tr>
<tr>
<td>Диапазон измерения потенциала, В</td>
<td>минус 5...+ 5</td>
</tr>
<tr>
<td>Диапазон регулирования выходного напряжения, В</td>
<td>0,5...12 0,5...24</td>
</tr>
<tr>
<td>Диапазон регулирования выходного тока, А</td>
<td>0,5×N...8 0,5×N...4</td>
</tr>
<tr>
<td>Диапазон регулирования потенциала сооружения относительно, В - МСЗ (ХСЗ) - ЦСЗ</td>
<td>минус 3,5...минус 0,5 минус 2,4... + 0,6</td>
</tr>
<tr>
<td>Входное сопротивление каналов измерения потенциала, МОм, не менее</td>
<td>10</td>
</tr>
<tr>
<td>Варианты климатического исполнения</td>
<td>У1; УЗ; М1</td>
</tr>
<tr>
<td>Температура окружающего воздуха исполнения У1; УЗ, °C</td>
<td>от минус 45 до +45</td>
</tr>
<tr>
<td>Температура окружающего воздуха исполнения М1, °C</td>
<td>от минус 40 до +40</td>
</tr>
<tr>
<td>Степень защиты оболочки (шкафа) по ГОСТ 14254-2015</td>
<td>IP20...IP54</td>
</tr>
<tr>
<td>Габаритные размеры, B×ШхГ, мм, не более</td>
<td>1700×1200×600</td>
</tr>
<tr>
<td>Масса, кг, не более</td>
<td>120</td>
</tr>
</tbody>
</table>
Блок совместной защиты БСЗ

Блок совместной защиты БСЗ (далее по тексту Блок) предназначен для работы со станциями катодной защиты в схемах с раздельной защитой для устранения вредного взаимного влияния соседних коммуникаций. Регулировка тока в блоке может осуществляться ступенчато, перестановкой регулировочных пластин и плавно, вращением ручки реостата.

ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ

Блок позволяет обеспечить совместную защиту нескольких подземных сооружений от одной станции катодной защиты путём установки соответствующего сопротивления в каналах блока.

Блок позволяет обеспечить выравнивание потенциалов в местах пересечений трубопроводов и кабелей связи.

Блок позволяет поддерживать требуемый защитный потенциал на изолирующих вставках и кабелях связи от станции катодной защиты, подключенной к трубопроводу.

Блок позволяет поддерживать требуемый защитный потенциал на патроне перехода под автомобильными и железными дорогами от станции катодной защиты, подключенной к трубопроводу.

Блок может быть использован в качестве регулируемого поляризованного дренажа.

Допускается в одном Блоке параллельная работа каналов одинаковой проводимости и с одинаковыми сопротивлениями.

Допускается параллельная работа Блоков с каналами одинаковой проводимости и с одинаковыми сопротивлениями.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

<table>
<thead>
<tr>
<th>Наименование параметра</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Количество каналов, шт.</td>
<td>от 1 до 4</td>
</tr>
<tr>
<td>Параметры одного канала:</td>
<td></td>
</tr>
<tr>
<td>номинальный ток при использовании ступенчатой регулировки (А)</td>
<td>25</td>
</tr>
<tr>
<td>при использовании плавной регулировки максимальный ток канала не должен превышать 1А</td>
<td></td>
</tr>
<tr>
<td>суммарное сопротивление регулировочных резисторов и реостата, Ом</td>
<td>33,3±3,33</td>
</tr>
<tr>
<td>сопротивление одного регулировочного резистора, Ом</td>
<td>0,050±0,005</td>
</tr>
<tr>
<td>количество регулировочных резисторов, шт</td>
<td>6</td>
</tr>
<tr>
<td>сопротивление реостата плавной регулировки, Ом</td>
<td>33,0±3,3</td>
</tr>
<tr>
<td>допустимое обратное напряжение между клеммами Вход и Выход 1, В</td>
<td>500</td>
</tr>
<tr>
<td>Степень защиты, обеспечиваемая оболочкой по ГОСТ 14254-96</td>
<td>IP34</td>
</tr>
<tr>
<td>Габаритные размеры (В х Ш х Г), мм</td>
<td>425х216х210</td>
</tr>
<tr>
<td>БСЗ (количество каналов — один)</td>
<td>425х606х210</td>
</tr>
<tr>
<td>Масса, кг, не более:</td>
<td></td>
</tr>
<tr>
<td>БСЗ (количество каналов — один)</td>
<td>7</td>
</tr>
<tr>
<td>БСЗ (количество каналов от двух до четырех)</td>
<td>18</td>
</tr>
</tbody>
</table>
ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Общие указания.
Техническое обслуживание (ТО) Блока означает регулярно проводимые осмотры, проверки, регулировки.
Регулярное проведение квалифицированного обслуживания позволяет поддерживать безопасность, работоспособность и надёжность Блока.
Техническое обслуживание Блока производится организацией эксплуатирующей оборудование. Перечень работ и их периодичность указана в таблице 2.8.2
Меры безопасности.
Работы по техническому обслуживанию проводить согласно «Правила по охране труда при эксплуатации электроустановок», утвержденные Приказом Минтруда РФ от 24.07.13 № 328н.8.3

<table>
<thead>
<tr>
<th>№ п ТО</th>
<th>Перечень работ</th>
<th>Периодичность</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Внешний осмотр шкафа на наличие повреждений, следов коррозии, ослабления крепёжных винтов и сочленений электрических разъёмов и контактов</td>
<td>1 раз в 6 месяцев</td>
</tr>
<tr>
<td>2</td>
<td>Проверка сопротивления заземления между шкафом и общей шиной</td>
<td>1 раз в 6 месяцев</td>
</tr>
<tr>
<td>3</td>
<td>Проверка надёжности контактных соединений подводящих кабелей</td>
<td>1 раз в 6 месяцев</td>
</tr>
<tr>
<td>4</td>
<td>Проверка работоспособности и правильного режима работы Блока</td>
<td>1 раз в 6 месяцев</td>
</tr>
</tbody>
</table>

Внешний осмотр шкафа проводить следующим образом:
- осмотреть шкаф снаружи на наличие следов коррозии, сколов и повреждений лакокрасочного покрытия при необходимости покрасить места коррозии;
- открыть дверь, осмотреть внутреннее пространство шкафа и проверить наличие и состояние проводов заземления;
- Проверить сопротивление заземления между шкафом и общей шиной, сопротивление не должно быть больше 0,05 Ом.
- Проверить надёжность контактных соединений подводящих кабелей, при ослаблении контактов – протянуть.
- С использованием токовых клещей или измеряя напряжение на шунте, проверить наличие выходного тока на каждом канале, при необходимости произвести регулировку изменением величины сопротивления канала.

ХРАНЕНИЕ И ТРАНСПОРТИРОВКА

Блок должен храниться в упакованном виде, условия хранения Блока 5 (ОЖ4) по ГОСТ 15150-69 в интервале температур от минус 50 до +50 °C. Допустимый срок сохранности Блока в упаковке изготовителя 3 года.

Блок в упаковке предприятия-изготовителя допускает транспортирование автомобильным, железнодорожным или воздушным транспортом по группе условий 5 (ОЖ4) по ГОСТ 15150-69. Условия транспортирования в части воздействия механических факторов – категория С по ГОСТ 23216-78 и ГОСТ Р 51908-2002.
Одним из важнейших методов борьбы с коррозией является электрохимическая защита. Надежность электрохимической защиты магистральных газопроводов в значительной степени определяется качественным соединением катодных и дренажных выводов к стенке трубопровода.

Наиболее технологически простым и высоконадежным способом присоединения выводов средств ЭХЗ является термитная приварка (сварка).

Процесс термитной приварки заключается в использовании тепловой энергии термохимической окислительно-восстановительной реакции, в ходе которой восстановленный и нагретый до высокой температуры металл оплавляется с поверхностью трубы и с выводом, образуя неразъемное соединение.

ООО «НПО «Нефтегазкомплекс-ЭХЗ» разработало и выпускает следующие виды термической приварки (сварки):
(СВАРКА) ВЫВОДОВ ЭХЗ

Термитная смесь медная-НГК

Термитная смесь медная 1 кг.
Фасуется в герметичную пластиковую банку с комплектом мембран 20 шт., мерным стаканчиком и прутком для уплотнения смеси.

Термитный карандаш-НГК

Термитный карандаш НГК (изделие цилиндрической формы, состоящее из термосмеси мелкой на специальной клеевой основе, в которое запрессован воспламеняющий элемент со шнуром замедленного горения или с проводами дистанционного поджига.

По способу воспламенения термитный карандаш выпускается:
- НГК-1 со шнуром замедленного горения
- НГК-2 с проводами дистанционного поджига

Одноразовая тигель-форма РТФ-НГК

Одноразовая тигель-форма РТФ-НГК (одноразовое изделие из герметично закрытого керамического жаропрочного стакана, в котором уже находится порция медной термосмеси, воспламеняющий элемент и мембрана.

По способу воспламенения одноразовая тигель-форма РТФ-НГК выпускается:
- РТФ-НГК-1 со шнуром замедленного горения (1)
- РТФ-НГК-2 с проводами дистанционного поджига (2)
Надежная приварка

Термитная приварка (сварка) выводов ЭХЗ с применением термитной смеси медной и многоразовой тигель-формы

1. Зачистка трубы
2. Засыпка порции термитной смеси в многоразовую тигель-форму
3. Обезжиривание поверхности трубы
4. Перемешивание термитной смеси
5. Многоразовая тигель-форма МТФ-НГК перед установкой на трубу
6. Закладка термокарандаша в многоразовую тигель-форму
РКА — ЭТО ПРОСТО!

Проклейка-формы МТФ-НГК или с применением термокарандаша-НГК и многоразовой тигель-формы МТФ-НГК.

Процесс поджига термитной смеси
терmiteй спичкой.
В случае с термокарандашом
используется другой источник
открытого огня (спичка, зажигалка).

Процесс горения термитной смеси

Защитный кожух

Готовая приварка

Установка одноразовой тигель-формы

Процесс горения РТФ-НГК-1
ВЕСЬ ПРИВАРОЧНЫЙ КОМПЛЕКТ

Все что нужно для подготовки места приварки (сварки), а также для организации самой приварки (сварки) есть в одном комплекте КСУ-ЭХЗ-НГК.

Состав КСУ-ЭХЗ-НГК может быть трех видов:

КСУ-1-ЭХЗ-НГК

<table>
<thead>
<tr>
<th>Материал</th>
<th>Количество</th>
</tr>
</thead>
<tbody>
<tr>
<td>Термитная смесь медная, кг</td>
<td>1 (20 порций приварок)</td>
</tr>
<tr>
<td>Термосмесь медная порционно упакованная, банка</td>
<td>5 (по 52 г)</td>
</tr>
<tr>
<td>Тигель-форма многоразовая МТФ-НГК, шт.</td>
<td>1</td>
</tr>
<tr>
<td>Тигель-форма одноразовая РТФ-НГК, шт.</td>
<td>2</td>
</tr>
<tr>
<td>Термокарандаш-НГК, шт.</td>
<td>4</td>
</tr>
<tr>
<td>Термоспички-НГК, коробка</td>
<td>1</td>
</tr>
<tr>
<td>Набор инструментов, шт</td>
<td>1</td>
</tr>
</tbody>
</table>

- напильник
- пассатики
- отвертка
- щетка металлическая
- наждачная бумага
- нож (2 шт.)
- банка со спиртом
- ветошь для обезжиривания места приварки

Состав каждого КСУ-ЭХЗ-НГК может меняться в соответствии с пожеланиями заказчика.

Весь набор термоматериалов, приборов и инструментов упакован в металлический кейс, который удобен для транспортировки и хранения.
КСУ-2-ЭХЗ-НГК

<table>
<thead>
<tr>
<th>Термитная смесь медная, кг</th>
<th>1 (20 порций приварок)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Термосмесь медная порционно упакованная, банка</td>
<td>5 (по 52 г)</td>
</tr>
<tr>
<td>Тигель-форма многогоразовая МТФ-НГК, шт.</td>
<td>1</td>
</tr>
<tr>
<td>Тигель-форма одноразовая РТФ-НГК, шт.</td>
<td>2</td>
</tr>
<tr>
<td>Термокарандаш-НГК, шт.</td>
<td>4</td>
</tr>
<tr>
<td>Термоспички-НГК, коробка</td>
<td>1</td>
</tr>
<tr>
<td>Фотоаппарат, шт.</td>
<td>1</td>
</tr>
</tbody>
</table>

Устройство термитной приварки катодных выводов (с дистанциональным управлением) УТП-ДУ-НГК, шт. 1

Набор инструментов, шт. 1

- напильник
- пассатиж
- отвертка
- щетка металлическая
- наждачная бумага
- нож (2 шт.)
- банка со спиртом
- ветошь для обезжиривания места приварки

КСУ-2М-ЭХЗ-НГК

<table>
<thead>
<tr>
<th>Термитная смесь медная, кг</th>
<th>1 (20 порций приварок)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Термосмесь медная порционно упакованная, банка</td>
<td>5 (по 52 г)</td>
</tr>
<tr>
<td>Тигель-форма многогоразовая МТФ-НГК, шт.</td>
<td>1</td>
</tr>
<tr>
<td>Тигель-форма одноразовая РТФ-НГК, шт.</td>
<td>2</td>
</tr>
<tr>
<td>Термокарандаш-НГК, шт.</td>
<td>4</td>
</tr>
<tr>
<td>Термоспички-НГК, коробка</td>
<td>1</td>
</tr>
<tr>
<td>Фотоаппарат, шт.</td>
<td>1</td>
</tr>
</tbody>
</table>

Устройство термитной приварки катодных выводов (с дистанциональным управлением) УТП-ДУ-НГК, шт. 1

Газоанализатор, шт. 1

Набор инструментов, шт. 1

- напильник
- пассатиж
- отвертка
- щетка металлическая
- наждачная бумага
- нож (2 шт.)
- банка со спиртом
- ветошь для обезжиривания места приварки
Термитная смесь медная-НГК и термитный карандаш (ТК НГК-1 и ТК НГК-2) с использованием многоразовой тигель-формы для труб малого диаметра (МТФ-НГК МД)

Для приварки катодных выводов и проводов КИПов на магистральных газопроводах диаметром 57, 76, 89, 108 мм с толщиной стенки не менее 3,5 мм включительно при строительстве, реконструкции и капитальном ремонте объектов ПАО «Газпром».

Термитная смесь медная-НГК

Термитный карандаш-НГК
Широкий спектр вспомогательных термитных материалов

Термитные патроны для сварки алюминиевых, сталелюминиевых и медных проводов.

<table>
<thead>
<tr>
<th>Тип патрона</th>
<th>Диаметр свариваемого провода, мм</th>
<th>Диаметр патрона, мм</th>
<th>Высота патрона, мм</th>
<th>Масса патрона, мм</th>
</tr>
</thead>
<tbody>
<tr>
<td>ПАС-16</td>
<td>5,1</td>
<td>18</td>
<td>50</td>
<td>13</td>
</tr>
<tr>
<td>ПАС-25</td>
<td>6,4</td>
<td>25</td>
<td>60</td>
<td>24</td>
</tr>
<tr>
<td>ПАС-35</td>
<td>7,5</td>
<td>25</td>
<td>60</td>
<td>32</td>
</tr>
<tr>
<td>ПАС-50</td>
<td>9,0</td>
<td>35</td>
<td>60</td>
<td>65</td>
</tr>
<tr>
<td>ПАС-70</td>
<td>10,7</td>
<td>38</td>
<td>65</td>
<td>80</td>
</tr>
</tbody>
</table>

Термитные патроны НГК для сварки медных проводов

<table>
<thead>
<tr>
<th>Тип патрона</th>
<th>Диаметр свариваемого провода, мм</th>
<th>Диаметр патрона, мм</th>
<th>Высота патрона, мм</th>
<th>Масса патрона, мм</th>
</tr>
</thead>
<tbody>
<tr>
<td>ПАС-6</td>
<td>5,1</td>
<td>18</td>
<td>50</td>
<td>13</td>
</tr>
<tr>
<td>ПАС-16</td>
<td>6,4</td>
<td>25</td>
<td>60</td>
<td>24</td>
</tr>
<tr>
<td>ПАС-25</td>
<td>7,5</td>
<td>25</td>
<td>60</td>
<td>32</td>
</tr>
<tr>
<td>ПАС-35</td>
<td>9,0</td>
<td>35</td>
<td>60</td>
<td>65</td>
</tr>
<tr>
<td>ПАС-50</td>
<td>10,7</td>
<td>38</td>
<td>65</td>
<td>80</td>
</tr>
</tbody>
</table>
Установка конденсаторной приварки выводов ЭХЗ НГК-УКПВ ЭХЗ

Установка предназначена для приварки выводов ЭХЗ и других сварочных элементов с запальным стержнем.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

<table>
<thead>
<tr>
<th>Тип сварки</th>
<th>Контактная</th>
</tr>
</thead>
<tbody>
<tr>
<td>Род тока</td>
<td>Постоянный, переменный</td>
</tr>
<tr>
<td>Напряжение питания, В</td>
<td>12 (АКБ), 230±10%</td>
</tr>
<tr>
<td>Зарядная емкость, μF</td>
<td>88000</td>
</tr>
<tr>
<td>Потребляемая мощность, не более, В·А</td>
<td>1750</td>
</tr>
<tr>
<td>Охлаждение</td>
<td>Вентилятор</td>
</tr>
<tr>
<td>Размеры (вшг), мм</td>
<td>450x500x300</td>
</tr>
<tr>
<td>Вес, кг</td>
<td>22</td>
</tr>
<tr>
<td>Количество операторов, человек</td>
<td>1</td>
</tr>
<tr>
<td>Переходное электрическое сопротивление контакта «элемент – труба», Ом, не более</td>
<td>0,05</td>
</tr>
<tr>
<td>Прочность при сдвиге для приварки на трубную сталь, МПа, не менее</td>
<td>50</td>
</tr>
<tr>
<td>Время цикла сварки, мс</td>
<td>1 - 3</td>
</tr>
</tbody>
</table>

ПРИНЦИП ДЕЙСТВИЯ

Прижимное устройство устанавливается на привариваемую поверхность. Сварочный элемент, выступающий за опорные ножки прижимного устройства, перемещается назад, сжимая пружину.

Установив прижимное устройство на привариваемую поверхность, оператор нажимает пусковую кнопку и запускает сварочный процесс, замыкая цепь прохождения электрического тока.

Под воздействием сжатой пружины сварочный элемент перемещается к привариваемой поверхности. Регулируемое усилие пружины обеспечивает необходимую скорость перемещения сварочного элемента.

Электрическая дуга исчезает при касании сварочного элемента привариваемой поверхности.

Продолжительность сварки составляет 3 мс.
Устройство термной приварки катодных выводов с дистанционным управлением УТП-ДУ-НГК

В целях безопасности персонала, и учитывая опыт прошлых лет, нами был разработан прибор, позволяющий контролировать процесс сварки выводов ЭХЗ, находясь на безопасном расстоянии от действующего нефтепровода или газопровода. Устройство термной приварки катодных выводов с дистанционным управлением УТП-ДУ-НГК может работать как с одноразовой тигель-формой РТФ-НГК, так и многоразовой тигель-формой МТФ-НГК с применением смеси медной, а также с аналогичными изделиями.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

<table>
<thead>
<tr>
<th>Характеристика</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Дальность действия, м, не менее</td>
<td>300</td>
</tr>
<tr>
<td>Рабочая частота передатчика, МГц</td>
<td>433,92</td>
</tr>
<tr>
<td>Мощность излучения передатчика, мВт, не более</td>
<td>30</td>
</tr>
<tr>
<td>Приемник — аккумулятор емкостью 1,2 Ач, В</td>
<td>12</td>
</tr>
<tr>
<td>Передатчик — батарея типа «Крона», В</td>
<td>9</td>
</tr>
<tr>
<td>Количество циклов срабатывания без замены батареи, не менее</td>
<td>500</td>
</tr>
<tr>
<td>Габариты кейса, мм</td>
<td>330x250x155</td>
</tr>
<tr>
<td>Габариты, мм приемник, не более</td>
<td>185x100x60</td>
</tr>
<tr>
<td>передатчик, не более</td>
<td>130x70x25</td>
</tr>
<tr>
<td>Вес комплекта, кг.</td>
<td>3,2</td>
</tr>
</tbody>
</table>

ПРИНЦИП ДЕЙСТВИЯ

Перед началом эксплуатации произвести полную зарядку аккумуляторной батареи приемника. Приемник должен находиться на поверхности земли в прямой видимости передатчика в выключенном состоянии, переключатель RH на задней панели в положении 0. Включить приемник, переключатель в положении I P1Т, при этом начинает светиться индикатор «Режим». На задней панели светодиод состояния выхода не должен светиться (если он светится, приемник неисправен, работать нельзя), переключатель RH выключен, подключить удлинитель в колодку на задней панели прибора. Установить одноразовую или многоразовую тигель-форму на место сварки. Подключить тигель-форму к удлинителю (в любой полярности). Включить переключатель RH в положение I на задней панели приемника (при погашенном индикаторе состояния выхода). Отойти на 200-300 метров. На радиопередатчике включить переключатель в положение 1, засветится зеленый светодиод. Закрыть красную кнопку примерно на одну секунду. Индикатор переходит в пульсирующий режим (мигает красная лампочка на передатчике), показывая, что идет передача сигнала на сварку. Через две секунды выключить передатчик.

СОСТАВ

Комплект состоит из одного радиопередатчика и одного радиоприемника. Как приемник, так и передатчик используют входную/выходную логику, управляемую микропроцессором, а также 64-битное кодирование, обеспечивающее высокую степень помехоустойчивости и защиты кода. Передатчик питается от внутренней батарейки типа «Крона» с напряжением 9В. Частота работы 433,93 МГц. Приемник питается от встроенного аккумулятора емкостью 1,2 Ач 12В. Приемник имеет два светодиода, один из них двухцветный и расположен на передней панели. Он обеспечивает индикацию состояния выходов и режима программирования, а также показание состояния источника питания передатчика (мигание при снижении напряжения до 7В). Второй светодиод на задней панели показывает состояние выхода. В качестве ключей используется три реле 12В/3А, включенные последовательно и управляемые каждое отдельным каналом. Каждый прибор комплектуетя тиридадо термоподогоном для воспламенения термной смеси.

Примечание: объемная и технические характеристики держателей датчиков радиоаппаратуры обеспечивается только в прямой видимости между устройствами. Эта дальность может сокращаться при наличии вблизи прибором радиопеерораскопичных объектов (металл, железобетон, газовое топливо), а также в результате мощных радиочастотных помех (всевозможные излучатели электропривода, радиолокационные станции, воздушные системы сетевой связи и пр.).
ОТРАСЛЕВАЯ СВИДЕТЕЛЬСТВА
ПОСЛЕПРОДАЖНОЕ ОБСЛУЖИВАНИЕ

За последнее десятилетие оборудование для электрохимической защиты подземных стальных сооружений от почвенной коррозии пережило настоящую технологическую революцию. Из простых аналоговых преобразователей превратилось в комплексы модульного оборудования и подсистемы коррозионного мониторинга, созданные на основе микропроцессорной техники с использованием сложных алгоритмов вычисления и управления параметрами ЭХЗ.

Значительное усложнение оборудования ЭХЗ вызвало массу вопросов, касающихся монтажа, наладки и эксплуатации и потребовало более высокого уровня подготовки специалистов.

Именно от качества монтажа, квалифицированного проведения пусконаладочных работ и последующего обслуживания зависит надежность и безотказность оборудования, а также срок его службы.

Компания ООО «НПО «Нефтегазкомплекс-ЭХЗ» оказывает полный комплекс услуг по запуску в работу и обслуживанию выпускаемого оборудования:

- консультационную поддержку монтажных, наладящих и эксплуатирующих организаций
- выездные и стационарные обучающие семинары для персонала эксплуатирующих, монтажных и пусконаладочных организаций. Стационарные семинары проводятся на учебном полигоне ООО «НПО «Нефтегазкомплекс-ЭХЗ», оснащенном всей линейкой выпускаемого оборудования.
- для самостоятельного обучения создано программное обеспечение «Компьютерный тренажерный комплекс»
- проведение шефмонтажных и пусконаладочных работ для обеспечения качественного монтажа и соответствия его требованиям проектной и эксплуатационной документации, а также квалифицированному вводу оборудования в эксплуатацию
- проведение гарантийного и постгарантийного сервисного обслуживания.

Используя многолетний опыт обслуживания систем ЭХЗ, для каждого типа оборудования разработаны перечни и периодичность работ по регламентному сервисному обслуживанию.
Периодическое сервисное обслуживание включает в себя полную диагностику оборудования, выявление и устранение возможных неисправностей.

Также в процессе проведения данных работ проводится консультирование специалистов, эксплуатирующих оборудование, производится обмен опытом эксплуатации, фиксируются и в дальнейшем учитываются при производстве пожелания и рекомендации по улучшению оборудования.

Проведение данных работ позволяет свести к нулю простои в связи с неисправностью оборудования и продлить гарантию на 12 месяцев до следующего обслуживания.

ООО «НПО «Нефтегазкомплекс-ЭХ3» имеет в наличии оригинальные комплектующие для обслуживаемого оборудования, актуальное программное обеспечение, квалифицированный персонал, необходимую разрешительную документацию на проведение работ, владеет собственным современным приборным и автомобильным парками.

После выполнения работ по сервисному обслуживанию, только предприятие изготовитель имеет право продлить гарантийный срок на выпускаемое оборудование.
КОРОРОЗИОННЫЕ ЭЛЕКТРОМЕТРИЧЕСКИЕ ОБСЛЕДОВАНИЯ

Специалистами ООО "Нефтегазкомплекс-ЭЗ" в период с 1997 по 2018 год обследовано более 43000 км магистральных трубопроводов, газопроводов-отводов и других подземных коммуникаций ведущих предприятий Российской Федерации по транспортировке жидк и газообразных углеводоро-
дов.
ООО «НПО «Нефтегазкомплекс-ЭЗ» имеет экспертное заключение о соответствии подрядной органи-
зации требованиям ПАО «Газпром» к выполнению следующих видов работ по диагностике на объектах
ПАО «Газпром» (согласно «Перечню видов работ для проведения оценки соответствия подрядных
организаций требованиям ПАО «Газпром», утвержденному Департаментом ПАО «Газпром» (С.В. Скрын-
ников) 19.07.2018):
• приемочное (первичное) обследование (4.1.1);
• детальное комплексное обследование (4.5.2);
• комплексное периодическое обследование (4.5.3).
По результатам проверки ПАО «Транснефть» на соответствие требованиям предварительного квали-
ификационного отбора, ООО «НПО «Нефтегазкомплекс-ЭЗ» включено в реестр организаций по видам
работ, услуг:
• Обследование коррозионного состояния магистральных трубопроводов и нефтепродуктопроводов,
технологических трубопроводов и резервуаров организаций системы «Транснефть», расположенных на
tерритории Российской Федерации.
Высококвалифицированные специалисты объединения, выполняющие коррозионные электрометри-
ческие обследования, периодически проходят обучение по различным программам повышения и под-
tверждения квалификации. Ведущие сотрудники принимают участие в разработке нормативно-
технической документации в части защиты от коррозии и диагностики трубопроводов.

На предприятии имеется аттестованная лаборатория неразрушающего контроля, оснащенная новейшими видами
оборудования российских и зарубежных производителей, для выполнения работ на объектах нефтяной и газовой промыш-
ленности по следующим видам контроля и диагностики:
• ультразвуковой (ультразвуковая толщинометрия);
• электрический (контроль изоляционных покрытий и электролитическая защита);
• визуально-измерительный.
Весь инженерный персонал лаборатории имеет вторую квалификационную группу по ультразвуковому, электрическому
и визуально-измерительному методам контроля. Средства измерений проходят периодическую поверку в аккреди-
тованных центрах стандартизации и метрологии, приборный парк постоянно дополняется и обновляется согласно
требований допускной документации организаций - заказчиков работ.

Все эти мероприятия направлены на дальнейшее повышение качества выполняемых работ, внедрение новых
методик и применения передовых знаний в области диагностики коррозионного состояния и неразрушающего контроля
tрубопроводов.
ВИДЫ И ЦЕЛИ ВЫПОЛНЯЕМЫХ ЭЛЕКТРОМЕТРИЧЕСКИХ ОБСЛЕДОВАНИЙ (согласно СТО Газпром 9.4-052-2016):

- приемочное (первичное) обследование:
 Приемочное обследование проводят с целью определения рабочих характеристик и проверки соответствии системы ПКЗ в целом и ее отдельных элементов требованиям нормативно-технической и проектной документации, подготовки документации для сертификации системы ПКЗ вновь построенных и реконструированных объектов.
- комплексное периодическое обследование:
 Комплексное периодическое обследование (КПО) проводят с целью оценки эффективности и повышения эксплуатационной надежности системы ПКЗ.
- детальное комплексное обследование:
 Детальное комплексное коррозионное обследование (ДКО) проводят с целью оценки коррозионного состояния объекта и эффективности его системы ПКЗ.

Результатом выполнения работ является технический отчет. Согласно требований технического задания заказчика к отчету прилагаются следующие материалы:
- географическая карта с обследованным участком трубопровода, нанесенными средствами ЭХЗ, параллельными и пересекающими трубопроводами, автомобильными и железными дорогами, водными преградами и т.п.;
- коррозионные карты обследованных трубопроводов, содержащие масштабные схемы трассы участков трубопровода с пересекаемыми искусственными и естественными препятствиями (автомобильные и железные дороги, коммуникации, ВЛ, болота, реки, овраги) с указанием видов и типов защитных покрытий, расстановкой средств ЭХЗ (УКЗ, УПЗ, УДЗ, КИП, КДП, БДР, ВЭИ), участниками коррозионной опасности, диаграммой распределения по КИП потенциалов с омической составляющей и поляризационных потенциалов, диаграммой распределения удельного электрического сопротивления грунта и глубины залегания трубопровода, данными по режимам работы УКЗ, данными о количестве и общей протяженности дефектов в защитном покрытии на каждом км, данными по коррозионным повреждениям (на основе ВТД, специальных обследований и обследований в шурфах при КО);
- диаграммы (графики) распределения значений измеренных потенциалов, наложенных токов и токов УКЗ с указанием дефектных мест в защитном покрытии, полученные с использованием измерительных комплексов;
- графики изменения потенциалов во времени в зоне действия блуждающих токов (результаты долговременной записи);
- акты обследования трубопровода в шурфах с фотоматериалами;
- фотоматериалы с трассы трубопровода.
ДЛЯ ЗАМЕТОК
Научно-производственное объединение «Нефтегазкомплекс-ЭХЗ»
+7 (8453) 54-45-15, 54-45-16, 54-45-17, 54-45-18
info@ngk-ehz.ru | www.ngk-ehz.ru